
AD-A2 77 084 /)
I1111111II __ _ _ _ _ __ _ _ _ _ _T__ _ _ _

REPORT DOCUMENTATION PAGE
FITOR IECuRITY CW.A5SiCATWON 16- KREIKTUCYMAK W INGS h

U NA
"laSCUMTV r CISIICTiON AUTNORIIlY I OUIIOTIWAT!u VARIIMUTY OF REPO"Y

Zb 01CLASSIPICATWIOA. oWNGADIIIG 5C141ULI DISTRIBUTION UNLIMITED
NA

4 111111OKIMING ORGANIZAT'IONt REPORT NUMGIERS)W1.01M Q&NAI mp" 14(

NAME OF PIRFORMING ORGANIZTION S OPPKIE SYMIOL 7a. NMEO "I 3ING OR h=1A IO N,-4ý

GC AODAIS5 (01Y. SU~t*. &"W ZiC@*I 76 a ~is(CRY. Stott..a bI * WCoo
iDecision & Control Systems Laboratory 98 .qic t
Department of Electrical Engineering
University Pr. PA 16801
IS. NAME 00 SUF404NG I1SPONSORING gbOnSIC SYMBOL 0 PROCURIMENT INSTRUMEN4T 1OINTIPICATION PVW

ORGANIIArioh of &Ai' h N00014-86-k-0515

SL. ADRES041Y5fi. Stott. *nd ViP Co) 1.SUC FWM
800 N. Quincy St. 1" M POV TS OKVI
Arlington, VA 22217-5000 [LEMENNTN NO M. 0NO. ACCIESSION NO

it Fne mida Inay faws06 94-0 8498
INTEGRATED DECISION, ESTIMATION AND COMM1UNICATION THEORIES

12 PRSONL AUHORWDr. Stelios C. A. Thomopoulos

i~s. rfP[ Of REPORT 13W. -TIME COVERED I&. DATE OF WEORT (11104W 110- a) S. PAGE COUNT
FROM 05/~36 rcQ5/90 08/26/93 10 + References

I$. SUPPtgMENTARY NOTATION

17 COSAII CODES FISI. SUBJECT TERMS 0010111116u19 F"009111 uf RIwUMV a"d W$MV by Si0t* AV^W)
0e 1 SOIJP Distributed, Decision, Fusion, Estimation, Comunication

IS. ABSTRAT (Cm*nliu OM 2fUVW hit 4OM WSWW 08101 AV 6" WAIWIht)

7Ue obijecfives of ths oPar Ime lo iaveuIfta:w thesyngW amng the decision esimaan ad
commInmucanion qic of a dWIssboed mudengor mym. *Hnc the effont i dou PjecI wo PimulY
coecenuumd in em devidapoal of a co-h*1 , frunewwk thu would libW the devwlqzme ofa coherent theory
of dis~ibuted decimiom ad hncorpwu esnAnuimoead commmawaMn aqieca In this cornmeL a Neyman-
Pemmo theoy 1w dl4imbuied decisn tomwic u devekoped. The efhcm of cornacmar aid WpolopcAl
aqieca in the onau K mad perfonnanc of the opionu dissibued decio tWim have beoo iehwged.o Mwe
opilmal dIsariumed Neymmn-Peuscn deciio toic ho bee dmved 1wr Ith idm cuem ad is cues where

~umnuiondelays chusil ev o. mid Sena=r miiiguanr an; jis. 0t. Wm~use ikvove in dIte desig of a
disuboaed decsiNo w twicesmem sact u Wwwwrsu cmreanc uad muldisaohueI I, deeco meve als been
inv P qWd& A Genudmzd Rvidene Psacumng thory thu uWud ad 101 W cexamed mWIfi the Bayesian
Md Depu-S .toI s ho ber developed A rimmainAu -fi , I 1w doe dra hla. mbss and

-yft ho dso ber devgloped ad umed wft apimd a -dw k
10. OeTRIOUTIOI. AVA"I.WITY OF ADETRACY 11. ABSTRACT WCO IEFV C.SW1C19IO

CRUWCLSSIPIEOWNUBAT0 0 SAME AS 07P? OTuc PS (U)
22. NMEO RSPNO INDOA Ib IIHO9i AMS C C. 011011E SYMBOL
LDr. E. Schnell. or M. Marron or M1. Hagad(0)rO N

00OFORM 1473,84M IS APRhditnM"lmabe " 14111111UMlnu . WQPJTY CASSWIATION 0Fhj'G

AN 00o 6*01 Of 0 11100



I4

DISCLAIMBI NOTIGI"U
\4

- .~

THIS DOCUMENT IS BEST "
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

• • • •• • •



INTEGRATED DECISION, ESTIMATION AND COMMUNICATION THEORIES
I

FINAL REPORT FOR CONTRACT N000144-6.k.0$ 1.

I

I

prepared by

Stlols C. A. Thomopoulo.

Decision and Control Systems Laboratory
Department of Electrical Engineering

The Pennsylvania State University 1
University Park, PA 16802

Tel. (814) 865-3744; Fax: (814) 865-7065 Accesion For
e-mail: sct@ecl.psu.edu Aesion For

NTIS CRA&I
UflC TAB!U: o . 'mcud 0]

l ':t: ~ , ..... ......... .. .C

., a lity Codes

Dist Special

("

August 24, 1993

WON&S



INTEGRATED DETECTION, ESTIMATION AND COMMUNICATION THEORIES
S

The objectives of this program were to investigate the synergies among the decision, 4rt
estimation and communication aspects of a distributed multisensor system. The effort in this
project was hence concentrated primarily on the development of a coherent framework for
data fusion and the development of a coherent theory of distributed decision capable of 0
incorporating estimation and communication aspects.

A fair amount of effort was focused on the development of a distributed decision fusion
theory. In this context a Neyman-Pearson type theory was developed for the distributed
decison fusion problem. The theory has been developed for the binary hypothesis testing
problem with both binary and M-ary quantized decisions at the local (sensor) level. The
thoery has established that, under statistical independence, the optimal fusion configuration
consists of binary (or M-ary) level likelihood quantizers at the sensor level, and a binary
Neyman-Pearson test at the fusion. Variants of this optimal Neyman-Pearson solution have
been investigated and the optimal (in the Bayesian or N-P sense) solutions were obtained in
the presence of propagation delays in the transmission of the decisions from the sensor to
fusion, presence of error in the fused data, and in the presence of sensor misalignment and
communication constraints in the provision of infornation.

Other issues involved in the design of a distributed decision fusion system, such as
intersensor correlation and multiresolution detection have been investigated. 5

A large number of publications have been emerged from this project and have appeared in
scattered journals or conference proceedings. A sample of a few publiactions is attached.

The success of this program has led to the teaming of the P.I. with Calspan and Crumman 5
Cooperations and the submission of a proposal for Pre Detection Fusion to Rome ADC. The
success of the Pre Detection Fusion program. The contract was awarded to our team. The
project has ended successfully. The acquired experience from this project, the first contolled
environment data fusion project, has been invaluable.

The basis of distributed decision theory has been expanded to more genral fusion concepts.
As a result, a Generalized Evidence Processing (GEP) theory was developed. The developed
theory attempts to reconciliate the Bayesian with the Dempster-Shafer theory. Numerical
comparisons between the GEP and conventional distributed fusion algorithms, highlight the
superior performance of GEP as compared to the conventional distibuted decision theory.

A list of publications that resulted from this project, a list of recent publications that relate to
this project directly, and a sample of the main publications that emerged from the project
follow.
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List of publications from this project
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I. INTRODUCTION 0

The problem of data fusion in a central decisionO ptim al Decision Fusion in center has am tdth ,entionof several Investigators l
due to the increasing interest in the deployment of

M ultiple Sensor System s multiple sensors for communication and surveillance thpurposes. Because of a limited transmission capacity. the It
sensors are required to transmit their decision (with or
without quality information bits) instead of the raw data 4r
the decisions are based upon. A centralized fusion center

STELIOS C.A. THOMOPOLLOS. Member. IEEE is responsible for combining the received information
RAMANARAVANAN VISWANATHAN.. Member. IEEE from the various sensors into a final decision.
DIMITRIOS C. BOLGOLVAS. Student Member. IEEE Tenney and Sandell [I I have treated the Bayesian 6
Southern Illinois Lniversitv detection problem with distrbuted sensors. However.

they did not consider the design of data fusion
algorithms. Sadjadi (2] has considered the problem of
general hypothesis testing in a distributed environment
and has provided a solution in terms of a number of

The problm of optal data fusion in the sese of the Ne.man. coupled equations. The decentralized sequential detection 0
Peasaon 0N-P) test in a cenalinzed fusn cene. is conidere. The problem has been investigated in (3-5]. Chair and
fusion center receives data f varou diltred 011150. Each Varshney (61 have considered the problem of data fusion

in a central center when the data that the fusion centers o itsa test individually Indepndetly of the receives consist of the decisions made by each sensor
other seiner. Du to 1miitig inUanim d capacity. the senscors individually and independently from each other. They
trmit their decicshim inmsed of raw d-,. In aditlon to iheir derive the optimal fusion rule for the likelihood ratio
decii.os. the sensors may iflit am or mowe bib of quality (LR) test. It turns out that the sufficient statistics for the
anr-ingili. The ..simm, is the N-P smse. dedsh. scheme at the LR test is a weighted average of the decisions of the

fusion center is derived and It is see. that an Im0roveest in the various sensors with weights that are functions of the
pirformance of the system b•oend that of the mat relabe sensor is individual probabilities of false alarm PF and the
femible. even without qualIty infornmiin. for a System of three or probabilities of detection PD. However. the maximum a-
more sensors, if quality Information bits w'e als available at the posterion (MAP) test or the LR test require either exact O
fusion center, the pe•rformace of the ditributle dedisin scheme is knowledge of the a-priori probabilities of the tested
comparable to that of the centralized N-P test. Several examples am hypotheses or the assumption that all hypotheses are
provided and an algorithm for Austin the threshold le a the equally likely. However. if the Neyman-Pearson iNP) test

in. et is employed at each sensor, the same test must be used to
fuse the data at the fusion center, in order to maximize
the probability of detection for fixed probability of false
alarm.

We derive the optimal decision scheme when the N-P
test is used at the fusion center. The optimal decision
scheme, in the N-P sense, is derived: I) for cases where
the various sensors transmit exclusively their decisions to
the fusion center, and 2) for cases where the various
sensors transmit quality bits along with their decisions
indicating the degree of their confidence in their decision.

II. DECISION FUSION WITH THE NEYMAN-
PEARSON TEST

Consider tte problem of two hypotheses testing with.%taiu. np received July I'. 1936. revised Mrch 3. 19r1. H, designatin4 one hypothesis and Ho the alternative
This research is sponsored by the SDIOIIST and maraed by the Office Assume that the prior probabilities on the two hypotheses
of Naval Research under Gram N00014-86-K-05 IS. are not known. A number of sensors N receive
Authors address. Dept. of Electical EnSineenng. College of observations and independently implement the N-P test.
Enlinennig and Technology. Southern linoms University, Carbondale. Let u, designate the decision of the jth sensor havingIL 62901. taken into account all the observations available to this

sensor at the time of the decision. If the decision of the
0018-9251 37 0900-0644 SI 0 C 1917 IEEE jth sensor favors hypothesis H1. the sensor sets u. =

644 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-23. NO 5 SEPTEMIBER i987
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+ 1. otherwise it sets u, M - I. Every sensor transmits p"]
its decision to the fusion center. so that the fusion center Po b logA.,, - log--
has all N decisions available for processing at the time of P,
the decision making. Let (P,- PD,) designate the pair of 6
the probability of false alarm and the probability of where
detection at which the jth sensor operates and implements for x 0
the N-P test. The fusion center implements the N-P test 6(x) I for x o 0
using all the decisions that the individual sensors have L0 for x • 0
communicated. i.e.. it formulates the LR test: At the fusion center, the probability oi ralse alarmn

P , u,..... "JH') ' Pf = P(.X(u)Ho) ,A (U - P (w,.' . . U I H o (I

where r* is a threshold chosen to satisi 17) for a .t'cnwhere u - (u,.u,. u,) is a I x N row vector with ?-' Similarly. the probability of deteLtion at the )usion
entries the decisions of the individual sensors, and r the center
threshold to be determined by the desirable probability of
false alarm at the fusion center Pý. i.e.. P , P(A.(u)IH, ,

SN,, >,*

P(A(u)JHo) = Pý 12) A. Similar Sensors

Since t ýi .. isions of each sensor are independent When all the sensors are similar and operate at the
from each other, the LR test (1) gives same level of probability of false alarm, and prob.bility ofdetection. i.e.. PF = PF = P, and IP, = PD = P0 for

A P(ai- 1  t (3) every i and j. all the probability disthtitons in 13) are
, P(eIHo) the same and the N-P test leads to the Iollowing ,cheme

at the fusion center. (Expression szmil;tr to (9) and (10)
from which the result in [61 is readily obtained. In order were obtained in 161 for the LR test.)
to implement the N-P test we need to compute
P(A,%u)IHo). However. due to the independence a, U, '-* 19)
assumption. it is easier to obtain the distribution Pdlog , O,
A\(u)JHo) which can be expressed as the convolution of
the individual P(Iog .\(u,)IHo). Thus. it follows from (3): where_

P Ptlog .(uoHo)* ... * Pflog Alu\,l)H0 ). (4) a, =

The LR .Alu,) assumes two values. Either (I - PD), log - if u, =-.i = N.(I - PF,) when u, - 0 with probability I - PF, under L - PD

hypothesis Ho and probability I - P, under hypothesis (1O)
H1. or. P;,,'Pr when u, = I with. probability Ppr under If k out of the N decisions favor hypoihesis H. 9) can
hypothesis Ho and probability PD, under hypothesis H,. be rewritten as
Hence. we can write (1 [P0 (I_-PFi] Hr log PF II

k ko*F(l--P)J]H

P(log A.(u,) Ho) = (I-PF.) (logA(u,) P ( - N Ho PD

For all sensible tests, though. P, - PD. Hen.c. log

logI - PD Po (I - P') > 0 and the N-P test beLfmesI - PF] P (I-PD)

PF 6 logA(u,) - log-) (5) k t 'I ,1

and where r" is some threshold to be determined so that a
certain overall false alarm probability P/ is attained at

P(log .((u,)H) = (I -Po) P (logA(u) the fusion center.
The random variable k has a binomial dismrbuton

-P, with parameters N and PF under Ho and parameter, .N and
log I ,PD under H,. Hence. P{F and the overall probablt\ 1 't

I - PF, detection Pf, are given by

THOMOPOLLOS ET AL. MULTIPLE SENSOR SYSTEM OPTIMAL DECISION FUSION
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P AC ~) 0oP1 .

P'0 = Pb 01 -PO- 114) *

here ,('ll)es sm

where I t7 I indicates the smallest integer exceeding t.
The threshold t4 must be determined so that (12) gives an L
acceptable overall probability of false alarm.

For the configuration of N sensors. we are interested
to know whether the N-P test can provide a (PfF.P'0) pair Fig I Dainranm of Lt at fusaoa centeru uder hypohess K., tor

such that two simuLar sensor sysmi N - 2

PF- : min{P I and P'a > max{Po1 U1) (PAIII15)

where i P) . PF I is the N-P test level for sensor t. Zq(l-Q)

............. V. ;

The next Theorem shows that condition (15 can be (,qi
2

satisfied if the randomized N-P test is used at the fusion
center, the number of sensors N is greater than two, and II
all the sensors are characterized by the same IPF. PD)
pair. V

Theorem. In a configuration of N similar sensors. Fig. 2. Distribnbw of LR at (saucenoer under hypothesis H, for

all operating at the same (PF. PD) = (p, q). the two simia wow system. N

randoma:ed N-P test at the fusion center can provide a
(P' . P' i satisfying flS1 if N - 3. q for s = 0.3. Hence, neither condition (16) nor

More precisely. for N r 3. the randomi:ed N-P test condition (15) (which is more restrctive) can be satisfied
can be fi.red so that for N = 2.

Let N - 3. The distributions of the LR under HK, and
F= PF = P and P' > P0  q (16) Hi are given in Figs. 3 and 4. respectively From Fig 3. 0

where PF and PD are the probabdiry"v of false alarm and
probabdity. of detection at the individual sensors. NAN) I NO)

Proof. First we show that for N = 2. condition (1) 15)

cannot be satisfied with the second inequality as a strict
one. Then we prove that for N = 3. the randomized N-P Wp",.

test satisfies condition (15). By using the fact that for
fixed probability of false alarm, the probability of
detection at the fusion center is maximized by the N-P
test among all mappings from the observation space into
the decision space. we prove by induction that condition 2 GI-O

{15) is satisfied for all N 4 3. p( )p)hiP20 P).
Let,V 2 and (P,Po) - (p. q) for both sensors. Fig. 3. Dislnbuton of LR at fusmon cenmer under hypothesis H ror

Using (4). (5). (6), (9), and (10). the LR distributions at three simda son" system. NV 3
the fusion center under hypothesis Ho and H, are plotted
for the reader's convenience in Figs. I and 2. KA^,,l,,t

respectively. Since for all p in (0, I)

p-, < p < 2pi -p) + p2 (17) 3p,2 q

it follows that. in order to satisfy PI = p. the 3t, -q) 2

randomized N-P test must be us, d at the fusion center Cl-qI3

with threshold q( I - q)ip( I -p) and randomizing factor
w defined by

p , + w2p(i -p) - p (18) 2-. )3

where 0 < w < i. Solving (18) we obtain w - 0.5. 1 ' P0,V)2 P2(,.p,

independent of p. Since P0 is determined by an Fig. 4 Dismtbtiuon of LR at fusion center under hputher,• H -r
expression symmetric to (18) (see Figs. I and 2). P - thre similar sensor system. N - 3
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if the threshold at the fusion center is set at q-( I - q,/ To assess the perfomiance of the fusion scheme
p"(l -p). further, we compare it with the best centralized scheme.

the N-P test which utilizes raw data. no( decisions, from
P'F - p3  ' 3p:(l - p) < p (9 the different sensors. The loss associated with the use of

for 0 < p < 0.5. The left-hand side (LHS) of inequality decisions instead of raw data at the fusion center. is
(19) is greater than p for p > 0.5. Hence, since P, < assessed by means of a simple example. Let a single

0.5, the randomized N-P test that satisfies (15) at the observation from each of the tour (N = 41 sensors be
fusion center is determined by disinbutea normally (see Fig. 5) as 4

pI - 3p'l -pI) - w3pl -p)- = p (20) r G G(O. 1). under Hl

from which G(S. 1), under H,.

3 3(l -p)

Hence. w tis a positive fraction for 0 < p < 0.5.
Since P'0 at the fusion center is given by an

expression similar to 120) (see Fig. 4). with q in place of
p. and q > 0.5, it follows from (20) that Pi' > q, which
proves the Theorem for N = 3.

Assume that the randomized N-P test satisfies
condition (16) for an arbitrary number of sensors N. We ' .
show that it also satisfies the condition for N + 1. and Fig. 5 Data distnbution at each sensor under hypotheses H, and IL,.

thus complete the induction and the proof of the and confidence regions. Threshold is indicated by T The iniervais

Theorem. t . TI, and Tr, x i am desgnated "confidence" regions Interval

Let Uv - {Ju. u .... u,) designate the set of iTL. TI)is designated "no confidence" rqion.

decisions from the N sensors that are available at the
fusion center. All the sensors operate at the same level The N.P test utilizing all the r,s will have the form

(p. q). LetAf(UL') designate some decision rule at the
fusion center operating at fixed probability of false alarm ,, >241

p. Letf•'P(U•) designate the randomized N-P test at the
fusion center at level p. For fixed probability of false To achieve a false alarm PF. a threshold of

alarm, the probability of detection at the fusion center = \V Q -I (p.) 125
(power of test) is maximized for the N-P decision rule
among all possible decision rules. is needed at the fusion center. where Q( I = I -

Let U('- = {Uv. u. I} designate the decision with (M ) the cumulative distribution function (cdf) of

ensemble of N - I similar sensors all operating at the the standard normaQ. and Q- is the inverse function of
same level (p. q). Then by choosingfv..( ) Q, Moreover.
fN'P(U,). P6,= Q~ NS) -261

PD( f ,-. (UVv.)) : max PD(fA.I(UV...V))

fv -, IVi To obtain a PF = 0.05 and PD = 0.95 at each

SP,,(f.N'(U..,)) (22) sensor, a signal satisfying t, = Q-' (0.05) is required.
from which I, = 1.64, and 0.05 = I - St,-5) from

from which it follows that which S = 3.29.
Consider achieving a PF- 0.001 at the fusion center

Pb .- ' • PIb ' > q. (23) with the four sensors. This requires a threshold 1b = 2
eQ-' (0.00l) = 6.18, from which PI = 0.9998 (see (25)

Thus the induction is complete and so is the proof of and (26)).
the Theorem. This example shows that the best decentralized fusion

Consider a sy.tem of four sensors N - 4 all operating scheme achieves a (PfF. Po) - (0.014. 0.9995). whereas

at PF - 0.05 ari PD = 0.95. If t? 2. from the the best centralized fusio,. scheme achieves a (Pr-. P?,)

binomial cumulative table we get P. = 0.014 and PfD = (0.001. 0.9998) for the same sensors. Clearly the loss

0.9995 at the fusion center. i.e.. a considerable in power associated with transmitting highly condensed

improvement in the performance of the overall system. information from the sensors to the fusion center is

From the binomial cumulative table it can be seen that at causing the degradation in the performance of the fusion

"least three sensors are required for the decision fusion scheme. As a compromise. a multibit information could

scheme to improve the performance of the system. as the be transmitted to the fusion center containing quality

Theorem suggests. information related to the degree of confidence that a
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sensor has about its ý,Iecision along with the decision il - PD 1 - PD,)
itself. This situation is examined in Section Ill. closest to the origi has abscssa- ( I

Table I gives the different N-P test thresholds that the and ordinate t I - P0,) " (1 - PD,) under H, or
fusion center can operite so that condition ( 15) is I I - P1))" under Ho. On the other hand. the point farthest
satisfied. The thresholds were found using the interactive P
fusion algorithm (IFA) that we developed (we the apart from the origin has abscissa and
Appendix).F

ordinate P0 , PD. under H, or P,- under o. In 4.
TABLE I between these two extreme points, the abscissae of the

P,
Decision Fusion 5 Sensor System distribution of the compound LR have the form n

Sensors PF Equal i Unequal - P SPFSensors PD Equal 1 Lqua _ rL - where S is a subset of integers from I -2.

prowlity Proabih,, ES I- PF
ProbabiiDty Pioeablsn.A ..m Ný and 3 its complement wirh respect to this set The

Threshold of Detection of Fals-, Alarm '

!i Fusion Center 'i, Fusion Center (d Fusion Center corresponding ordinates are nl P0 nt i - P0 ) under H,

PDMAX - 9M00 PFMIN - 5000OE-Oi or PFS, i -PF) I under Ho. where 1 fl; designates the

PD PF cardinality of the set fl. Once the distribution of the
6859 o 977407 3000OOE-04 compound LR is determined, the threshold at the fusion

i 9000 998842 115812E-02 center can be determined to satisfy a given probabilita of
52631E-01 999970 225925E-01 false alarm P'F from which the probability of detection

PID is determined. At the fusion center we want to set-up
I SENSOR OFF the threshold so that PfF S PF while PfD > max {P0

PDMAX - 95M00 PMIN = 50000E.01 This is achieved by the (FA as the following example
t. PD PF illustrates.

36100 985931 48125OE.03 Consider a five-sensor system. All the sensors operate
1.0000 999519 140187E-01 at the same level PF = 0.05. However, due to different

noise environments or quality of the sensors, they ýield
2 SENSORS OFF different Pos as Table 11 indicates. •

PDMAX - 9500 PFMIN - 500O0E-01
TABLE 11

tPD PF Probability Of Detection At The Individual Sensors For The sime19 000 992750 725000E-02 Probability Of False Alarm In A Five Sensor System

. I S 2 3 4
B. Disimilar Sensors Po 0.95 094 093 092 ). I

Case I. All the sensors operate at the same
probability of false alarm level P,. but different levels of
probability of detection from each other. i.e.. P0 ** PD. Table Ill summarizes all the choices of thresholds at
i A j. Without loss of generality we assume the the fusion center that satisfy condition ( 15) as i ien b%
,anking PD, > PD, > ... > P,,, from which the the IFA. A significant improvement in the system
following ordering in the abscissae of the conditional performance is achieved by fusing the indiv idual
distribution ot the individual LRs results: decisions.

I I - Po, 1 - PD. Case 2. The different sensors operate at ditterent
P, < -< ...< probabilities of false alarm and probabilities ot detection.

I P I - Pr I - P, i.e.. PF, 0 P, and Po, 0 PD,. i y j. The distribution of

D, the cumulative LR of the fusion center is obtained
< ... , numerically as in case 2. and the threshold i,. is iound to

PF PF satisfy a given Pf. Ideally, the threshold t? must he

The conditional distribution of the compound I i at chosen so that condition (15) is satisfied. However :his
the fusion center is obtained by convolving the i.lividual may not always be feasible The following exampie,
distributions, using the IFA. Convolution of the illustrate the procedure.
distributions P(log .%(u,)IHk) corresponds to linear shifts We consider three different systems with five. :our.
of their logarithmic abscissae. which is translated into and three sensors. Each system results by eliminiuni the
addition of logarithms. Hence, the distribution of the LR sensor with the lowest PD from the system that hais one
P(A(u)IHk) at the fusion center can be obtained directly more sensor. For the five-sensor system. the, P:,, P. of
by multiplication of the abscissae of the P(A(u),)IHF). the sensors are given in Table IV.
Hence the point of the distribution P(,\(u)IH,) which is Table V summarizes the results as obtained !". IF-A
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TABLE III TABLE V

Decision Fusion 5 Sonw System Decision Fusion 5 Sen..,' 'ýy stemn
Seasons P1 Equal x Unequal Sensors PF Equal _ Unequai x
Season PD E1UAJ _ Unequal _Senor PD Equal _ L'n-qual I

Prability Probabilivt Probability Probability
Threshold of Detection of False Alarm Threshold of Detection of False Alarm

4 Fusion Center 4 Fusion Center Ca Fusion Center 'i Fusion Center (a Fusion Center (a Fusion Cetner
4t,

PDMAX - 95000 PFMIN - 500OOE-01 PDMAX 95(MA0 PFMIN 10000E.01

P" PD PF t PD PF
6163 2 957817 3000OOE-04 57882. 957817 269200E-05

53004 9%3797 142812E-03 426.86 960153 816400E-05
45 880 968973 255625E-03 373 63 962908 155360E-04
40 339 973523 368437E-03 35872 966248 24&WE-04
38 907 977913 481250E-03 28483 969430 360200E-04
34 208 981772 594062E-03 273.46 973289 501320E-0
32.081 985391 706874E-03 239 36 977840 691439E-04
29610 988731 819687E-03 160.34 981459 91 7159E8-04
Z8 207 991913 932499E-03 153 94 985841 120228E-03
24 416 994668 104531E02 134 74 991024 158640E-03
20 705 997003 115812E-02 102.72 997003 2i6852E03

10M 997454 330156E-02 99369 997179 393780E-03
17806 997835 544500E-02 75752 997382 661908E-03
15413 998165 758843E-02 66305 997622 102314E-02
14683 998480 973187E-02 63660 997912 147942E-02
13552 .998771 .118753E-0i 42643 998143 .202115E-02
12709 999043 140187E-01 37325 998416 275098E-02
11174 999282 161622E-01 35836 998746 367287E`02
10778 .999513 .183056E-01 28454 999061 477889E-02

94760E-Oi .999717 .204490E-01 27319 999442 617598E-02
82023E.01 999892 225925E-01 23912 999892 .805816E-02

I SENSOR OFF 0 *
TABLE IV PDMAX - 95000 PP41N 20000E-01

Probability Of False Alarm And Detection For A Five-Sensor System t. PD PF
With Disinular Sensors 1129 9 976981 1504008E03

I 2 3 4 46908 .9798 W600E-03
"1 5 4 1058 982575 143480E`02

P, 005 004 0.03 0.02 0.01 3 9420 .986246 236600E-023 1300 989742 348320E-02

P0  0.95 0.94 G093 0.92 0.91 30051 993983 489440E-02
2.6303 .998984 679560E-02

2 SENSORS OFF

In all cases, a significant improvement in the performance PDMAX 950 PFM1N - 30000E-01
of the system is achieved from fusing the decisions. M

PD PF
32.222 989720 458000E,02

Ill. TRANSMISSION OF DECISIONS ALONG WITH
QUALITY INFORMATION

with the decision when the observation r falls into this
Consider the case where the fjui sensor transmits region. The two regions forming the compliment of the

quahity information bits to the fusion center about its . (TL. T.) region are considered confidence regions and the
decision along with the decision itself. The sir tplest case bit c - I is transmitted along with the decision when he
corresponds to the transmission of binary {0. I1 quality observations fall into one of the two regions.
information indicating the degree of confidence that the The joint probability distribution of (u.c) (skipping
sensor has on the decision that it transmits. Under the the sensor index for simplicity) can be easily obtained

scenario, a bit one indicates "confidence", whereas a bit from
zero indicates "no confidence". Fig. 5 illustrates how the P(uIclHk) = P(clu.H,) P(uIR,), k = 0. 1 12_1
binary quality bit c is defined. A strip (TL. Tu) about the
threshold T of an individual sensor is designated as region where P(u1H-). u - t I and k = 0. 1 is specified o%
of no confidence and the bit c - 0 is transmitted along PF and Pa. and referring to Fig, 5.
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PtA(u.ctH,; = Prik out of N decisions favor H, ad.n
.dP(rIH,)/ n out of these k decisions have
PIC I"-confidence index I and. m out of

the N - k decisions that favor H,,
dP(rIH,) - C have confidence index I Hf . , IV ':

P(c =01u= -I. HO dPri H)()(: rIItC.

( CIO]' It - C'o]'-" "''

P (c ju .H ,) = Id P (rI H ) = C oH ( N) P D - Pwi ' *

P u-= Olu -l.H 0 ]= dPIr H [ Similarly.

f dP(r!Hk = CMo P(A(u.cHHo) ([C,]"lr II - C( l-

i P(c=lIu=-I.Hk) fdP(rIH,) (N-k)C 1 _ [ I C, 1%

.P(ril,) = Clo (N) p I -pr).,

1281 from which

fork 0.o .1 I•-
Hence, for every sensor k" ."-* "

P(u-i. c-jlHk) - C,1, P(,,=/]H,). '[I -Coll*- (N 10C~

-1.landj = 0. I (29) ][-C~o-e-- "( ) P,(I- '-J (35)
and 10 k •0-P)

A(Ua. C.J) P(u i. c=jAH) C, P(u=iIH,• The Pfo is obtained by an expression similar to (35 with
P(u-i. c-jIHo) CO, P(u=i Ho) Po in place of P, and the index I instead of 0 above C,

The thresholds if. tf. and rf are to be determined to
= - 1. 1. andj = 0. I. (30) satisfy a given probability of false alarm at the fusion

Combining (6) and (22) we obtain center. Notice that more than one set of thresholds can S
yield the same PIF. Clearly, the set that results in the

P(A(u.c)H,)=Cj P, 6 .(u.c) - highest Pfo must be selected.
CI PF) From (35) it can be seen that a superior performance

CC,, P0  n regards to (PfF. PfD) can be achieved when quality
' C•,, O .(u. C) - - information is transmitted along with the decisions. The

improvement in performance of the fusion center when S
+ C , ) V - Col (I - PD) quality information bits are transmitted comes from the

-o).(u.c) 0 - PF) fact that the summation over P(A,(u.c)j Hk) can be made

finer with the three different thresholds. To show that.

+ P D) b (u.c) CIO (I - P0o consider the example of Section IIA. In this example four
C' II(I-P C:o(! •" similarsensorsN-4. operate at PF = 0.05andP 0 =

(31) 095 from received ,Ata r, - N (0. 1) under Ho and r . S

Similarly. P(.\(u.c)IHo) is obtained from (29) by N (S= 3.29. 1) under HI. The threshold at each sensor is
""set to t, = 1.64 to satisfy PF. Using Fig. 5 and the

substituting PD with PF in the product-weights of the pret tus equationst we obtain for 5L., - 0.8t: = 1.312
delta functions. Therefore. the probability distribution of pne t., equans ta for the , 0.8t a gI .31
the LR at the fusion center is given by the convolution and r, - 1.2. and:, = 1.968 the C,,s that are gi.en in

Table VI.
P(log A(u.c)IH) = P(Ilog A(u,.cj)fHk) Using the IFA. it follows that there is a choice of 33

SP(log A(uv.cý,)IHk). (32) different thresholds that the fusion center can operate ,o
that (15) is satisfied as shown in Table VII. It can be

In the case where all the sensors operate at the same seen from this table that there is a significant
level (P,.. PD) the mathematics simplify somewhat. since improvement in the performance of the overall s.stem
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TABLE VI TABLE ',11 I

Quality Sit C•efficients For Gaussian Dilnbited Data Comparauve RAsulu From 3 Different Fiton S•,ten , A is Four
SIN-4i Sensors. All Opeftnl At tLevel iP, Poi -005 05 ), rnen

H, H, The Intavi"ual Sensors Transmit
C, 94 046 1 1 P;,P

coo 0052 054 Only decisions 0014 0 ij,•coo• 0.52 004, I

Co 048 0953 Decision wilt one quality bit ) 0013 ,) 9,Y

Raw da i Best c e. N.P test 1 001 ) *9"N8

TABLE VII interesting to notice that fusion of the decisions impro'.es

Sensor with QuAlity Bis the performance of the overall system even in the case 01

Sensors PF EquA- x Unequal two sensors when quality information bits are transmitted

Sensor PD Equal x. Unequal - along with the decisions, as Table IX indicates. Table X
shows the performance of a three sensor system A ith

Probability Probability quality bits.

Threshold of Detection o0 FAise Alam
a Fusion Center :a Fusion Center 64 Fusion Center TABLE [A

PDMAX 95000 PFMIN - 500OE-01 Decision Fusion. 2 Sensor System %%th Quiw% B,t,

t. PD PF Sensors PF .Equal Unequat _

62318. 956002 175551E-05 Sensors PD Equal i Lncquil _

20357 960940 199808E-0S
9390' 961918 21 0220E-05 Probability Probabiita

"2988 7 963462 261876E-05 Thmshol of Detection of False Alaim
29119 980782 856706E-05 ( Fusion Center (q Fusion Center (a Fusion Center

951.21 981595 942131E-05 PDMAX - 950 PFMIN - 500OE.ul
926 74 990711 192580E-04
438.9 90738 193191 E-04 t PD PF
302.74 990880 1979]0E-04 1 0654 951900 696499E.E2
13965 990937 201943E-04 10380 995129 461I IE.,)I

136.06 992362 306685E-04
44 446 992406 316713E-04 I

43 303 993906 663133E-04 IV. CONCLUSIONS
42 189 998114 .1i6041E-03
"20503 998114 166055E-03 The problem of fusing decis 3ns from N independent

14 146 998129 .167161E-03 sensors in a fusion center was considered. We asumed

13 782 998524 195805E-03 that each sensor transmits its decision to the fusion
6.5253 998525 195924E-03 center. The decision of each individua! c:.jr i• on

6.3575 998577 2-4121E-03 the N-P test. The fusion center formulates the LR using

4 5021 998579 204578E-03 all the received decisions and decides on %,hich
"2.0768 998580 .204970E-03 hypothesis is true using the N-P test also. The pdf ot the
2 0234 998662 .245647E-03
1 9713 999354 596850E-03 TABLE X

66097 999355 .597499E-03
64397 999398 .664750E-03 Decision Fusion: 3 Sensor Svstem ,ith Quiart Bit,

.62741 999762 124555E-02 Sensors PF : Equal x Unequal _
29'Z06 999763 124796E-02 Sensors PD: Equal x Unequal -

21036 .999763 1248S0E-02
20495 999771 128557E-02 Probability Pro.,

94544E-01 999772 130148E-02 Theeshold of Detection of Falke Alri,"
92113E-01 999810 171378E-02 Ca Fusion Center (a Fusion Center a Fusion C=ntc:

66931E-01 999810 .171395E-02
340 E-0E1 .999811 175343E.02 PDMAX = .95"00 PF.MIN = 5,Ao,,E .-,

29316E-01 .999851 .311705E-02 t PD PF

40.645 985857 I -141E, ,

compared with the individual sensors and the fusion 13.277 987683 19lfiAF

system without quality information. For a comparable pf 6.124 987804 11)164-E
D 19493 987994 -'O',4.''E"

0.9998. the P.'- = 0.0013 when quality bit 1.-9932 98994 .":b :E
information is transmitted as opposed to (Pý, Pf) = .62039 994500 Aii,'.E

(0.014. 0.9995) without quality information. The .6044• 997872 iiW1E
performance of the fusion center when one quality 19745 997890 1 LzF :

information bit is transmitted approaches that of the best .88740E-01 998065 "I:

centralized N-P test, as Table VIii suggests. It is 28243E-Oi 998250
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log LR at the fusion center was obtained as the probability of false alarm, or probability of detection, Is
convolution of the pdfs of the log LRs of the individual specified, the IFA determines the other to. given the
sensors Once the pdf of the LR is obtained, the threshold probabilities of false alarm and detection of each

at the fusion center is determined by a desired probability individual sensor.
of false alarm.

For a fusion system with three or more sensors, all APPENDIX
the sensors operating at the same (P,. PD) level. it was
proved that if the N-P test is used to fuse the decisions. The IFA receives as data the number of sensors. their
the probability of detection at the fusion center exceeds (PF PD) levels, and the C, quality information
that of the individual sensor for the same probability of parameters if the sensors transmit quality information bits
false alarm. However. if the sensors operate at arbitrary along with their decisions. It then computes the LR pdf at
(PF. PD) levels, no general assessment can be made the fusion center conditioned on each hypothesis A•ter it
about the performance of the fusion center since the computes the pdf. it asks the user which option he she
performance depends on how far the operating points of prefers The alternative options are the folloin g.
the sensors are from each other.

The problem of decision fusion when the sensors I ) Display of the entire pdf.
transmit quality information bits indicating their 2) Threshold computation for a given PF and displa. ot
confidence on the decisions was also considered and the the corresponding Pj.
N-P test at the fusion center was derived. Several 3) Determination of the thresholds that satisf., 1 [51
numerical examples showed that use of quality 4) Threshold computation for a given Pý and displa.• of
information can improve the performance of the fusion the corresponding PI.
center considerably. 5) Elimination of one or more sensors and repetition of

An IFA was developed to solve the fusion problem the algorithm.
numerically. Once one of the three parameters ithreshold. 6) Quit.

* 0
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1. INTRODUCTION

Systems of distributed sensors monitoring a
common vlume and passing t•i•r decisions into a
centralized fusion center which further combines
them into a final decision how been receiving a lot of
attention in recent years 111. Such systeim ae expected
to inacase the reliability o( the detection and be fairly
immune to noise interference and to failures. In a
number of papers the problem of optimally fusing
the decisions frm a number of sensors has been
considered. Raney and Sandea d21 have considered
the Bayesian detection problem with distributed
sensors without considering the desin of data fusion
algorithms, Sadjadi (31 has considered the problem of
hypothesis testing in a distributed environment and has
provided a solution in terms of a number of coupled
nonlinear equations. The decentralized sequential
detection problem has been investigated in 14, 51.
In 161 it was shown that the solution of distributed
detection problems is foupolynomial complete. Chair
and orshncy (71 have solved the problem of data
fusion when the a-priori probabilities of the tested
hypothess are knowin ad the ikuelehood-ratio (L-R)
test can be implemented at the receiver. Thomopoulos.
Viswanathan. and Bougoulias (8, 91 have: derived the
optimal fusion rule for unkwn a-priori probabilities
in terms of the Neynian-tarson (N-P) test.

For the, "parallel sensior topollog of Fig. 1,
Srinvas [101 ha s shown tha t the globally optimal
solution to the fusion problem that maximizes the
probability of dete ion for &i d probability of false
alarm when seasor tinsmit independent, binary
decisio to the fusion center, consits of L-R tests

Mansum atecei Mard 31, 1997; ruised January 10. 1969

IEEE Log No. W0105.
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"II. OPTIMALITY Of N-P/L-R TEST IN DISTRIBUTED
DECISION FUSION

_ _ _ _ _. A number of sensors IV recei data from a
common volume. Sensor k receives data rk and•. i, /'generates the first stage deiso u&. k - 1,• 2-...

S/ ,The decisions are subsequently transmitted to the
fusion center where they are combined into a final

S c , decision uo about which of the hypotses is true, Fig.
I. Assuming binary hypothesis testing for simplicity,
wewe us u, = I or 0 to designate that sensor i favors

Fig. 1. Ossanbuted se fuso Paralci t p "thypoeses H, or Ho, respectively. In order to deriveF•I 1.Omnute €,maxfuson.Pari~g toog~gy, thegl$obally optimal fusion rule we assume that the

received data rt at the N sensors are statistically
independent, conditioned on each hypothesis. This
implies that the received decisions at the fusion center

)98J are independent conditioned on each hypothesis.
Improvement in the performance of conventional
diversity schemes is based on the validity of this

€/ assumption [161. Given a desired level of probability
.2 i of false alarm at the fusion center, PF. = o0, the test
_)9- /i that maximizes the probability of detection PD. (thus,

minimizes the probability of miss PAe. 1- Po,) is
92 / / the N-P test 117, 181. Because of the comparison to a

/ / threshold this test is referred to as a threshold optimal00 / / .
090 "test.

/ ,/ ..... Next, we prove that the optimal solution to the
a fusion problem involves an N-P test at the fusion

center and L-R tests at the sensors.
Fig. 2. Exiaple •n ny o• I.•apani Sp i use, Let d(uad 2 ..... tU) be the (binary) decisions .
(101 for deample aon. Thee oLenaical p-cJ sed i n (ule) a e thsion . bince y) decis(101 i~l fo ww umn. bne. Wire+=trcam serom in111.Win function (rule) at the fusion. Since d(ut,u2_..u...v,)

Raylega channel. Paradigm takien 0U (Ill. is either 0 or 1, and all the possible combinations

of decisions {ul,u2,....uN} that the fusion center

at all sensors and a N-P test at the fusion center. can mceive from the N season is 2 V, the set of all

This test will be referred to as N-P/L-R hereafter. possible decision functions contain 22"d functions.

The proof of the optimality of the N-P/L-R test in However, not all these functions d can be threshold

(101 is based on the (rust-order) Lagrange multipliers optimal as the next Lemma states.

methods which does not always yield the optimal L.EMMA 1. Let the sensor individual decisions uk
solution as it is shown by example in (111. For the be indeenden fti each other conditioned on each
paradigm in [111, the Lagrangian approach fails to hypothesit Let P,, - P(u, - I Ho) be the false alarm
yield to optimal solution. Instead, it yields a solution pobab/iry and PA P(ui I I Ht) be the probability
which is by far inferior to the optimal solution, see Fig. of detectin at ath sensomr Assumng without loss of

2. A detailed description and analysis of this singular generality, that for every sensor PD, > Pp, a necessar'y
case is given in 111, 121. A theoretical explanation of condition for a fusion function d(ui, uz2. u.v) to be
the failure of the Lagrange multipliers method can be dureshoi optimalis
found in [13, ch. 5, and 14, 151.

In general, if the optimal solution lies on the d(A1,,U - A,) - I d(A.,U - A.) - I

boundary of the domain of x (as in the decision fusion if A,,>Ak (1)
paradigm in (111), the Lagrangian formulation fails
to guarantee the convexity of the objective function, where U - {(u], u2,. ,uN I denotes the set of the

and thus, the optimality of the solution obtained peripheral sensor decisions, Ak is a set of decisions

using the Lagrange multipliers method. In that se.ase. with k sensors favoring hypothesis H, (whereas the

the proof of optimality of the N-P/L-R test for the complement set of decisions U - At favors hypothes s

parallel sensor topology in (101, which is based on Ho), and A. is any set that contains the decisions

a Lagrangian formulation, is incomplete. We give a flvm these k senors. (The symbol ">" is used to

complete proof of the optimality of the N-P/L-R test indicate "greater than" in the swndard multidimensonal

for the distributed decision fusion problem that does coordinate-wise sense, i.e., A, > AA, if and on&, if
not depend on the Lagrangian formulation. u.,. u&,V4 i - 1,2,... ,N, with at least one holding as

762 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL 25, NO. 5 SEPTEMBER :94•9



a jsmc inasguisy, **enr u.. (uk,) indicates e decision However. " is an unanterest•u•g cam. for tf we wish
of die swe iih senw in the A,(Ak) decisin seLl to mau ze the detection probability at the fusion. we

would either ignore the sensors for which PD. _S PF,

PROOF. Let Pp - P(u, - II Ho) be the fale alarm or, randomize their decisions by flipping coins and
proabilty and PD, = P(u, - II HI) be the probability deciding with probability 1/2 for either one of the two
of detection at the ith sensors. d(Ak,U - A,) -1 hypotheses.
mplisL MA 2. For any fired theshold A0 and any

p(A.U - At IH) . p(A, I Ht)p(U -A I HI) > A( - moneoonic ftncrian t(u 1t. u.N), Po. is an
p(AkU - A,4 Hio) p(A, I Ho)p(U - At Ho) increasing function of the PDs, i - 1,2, ..., N.

(2)

which in turn implies that, for A. > Ak, PROOF. The decision function that corresponds to
the likelihood test at the fusion is contained in the

p(A,,U - A, I HI) set of monotone funcions of N variables. Consider
p(A,,U - A, I HK) one such monotone increasing decision function

p(A, k H1 )p(A, - Ak I HI)p(U - A. I Hi) d(uj,u2,u....u). The function d, when expressed
SU Ain sum of product form in the Boolean sense 119!,p(Ak HopA -Ht H)p(U - A .I H o))

p(Ak, H,)p(U -A I HI) > Ao (3) uncomplemented form and none of the complemented
p(A- I H)p(U - A5 I Ho) variables (atO 2 . .N). Since the random variables

stU2 .. UN are statistically independent, it is possible
since, under the assumption that Pi,, _ P. for peey to compute Po. knowing the Pas [9, eq. (20)-,(22)I.
sensor *, "]'Tking partial derivatives of the PD, w.r.t. PD,s. one

P(u, - II HI) . PD, P(u, -01 H1) 1- Pa,. obtains that (0PD/5Pj) >0 Vi, Le., the desired result. 0

P(u, - II H0) T,- P(u, -- 01 Ho) I -P (4) (As an illustration, consider the function d(u1.u:,u,) =
uI + u2u3. For this function PD, = PD, + PDPo, -

From (3), it follows that d(A.,U - A.) - 1. Po,(PotPo,), from which, (0PD./1Po.) > 0, =- 1.2.3-)

REMARK 1. Functions that do not satisfy (2) cannot THEOREM 1. Under the asstmption of statistcal
lead to the set of optimal thresholds. A function d that independence of At sensor decisions conditioned on 0 O
satisfies Lemma 1. is called a monotone increasing each hypodhes:s the optimal decision fusion ruie for ihe
function in the context of switching and automata parallel sensor topology consisi of an N-P test (or. a
theory, Table 1. [191. randomized N-P sest) at the fuisn and L-R tesis dt all

sensors.
REMARK 2 If PD. - PF, for all sensors, the L-R at
the fusion is degenerated to one, identically for any PROOF. Given the decisions u1 ,u2 ,...,uv at the •
combination of the peripheral decisions [91. Hence, fusion center, the best fusion rule which achieves
for any lIkelihood test, the false alarm probability maximum PD. for fied Pp1 - o0 is the N-P test
Ph and the detection probability PD. at the fusion are (assuming that the false alarm probability oo is
either a) both one, if the threshold is less or equal to realizable by an N-P test at the fusion; the randomzed
one, or b) both me, if the threshold is greater than cas is treated separately afterwards). Call the best test
one. In the first case. the fusion rule always favors at the fusion center t(u!.... u) 6 A From Lemta

hypothesis one, independent of the combination of 1, it follows that the decision function that corresponds
sensor decisions, ke.- d(U) - 1 for all Us, which is to the above test must be one of the monotone
a monotone increasing function satisfying Lemma increasing functions d(ut,u 2 ,. .. UN). Assume that the
1. In the second case, the fusion rule always favors individual sensors use some test other than the L-R
hypothesis zero, independent of the combination of test and are operating with { (PF,, PD,) Vi} such that
sensor decisions, i.e., d(U) - 0 for all Us. which is a the condition Pip "oo is rmeL From [& 9) it is seen
monotone increasing function satisfying Lemma 1. that Pp. is a function of the Pps only, and that Pot is

a function of the Pt,,s only. Furthermore, from Lemma
REMARK 3. If PD, <- Pp for all sensors, th, 2, PD, is a monotonic increasing function of the Po •
inequality in (3) is reversed, and Lemma 1 %till holds Therefore, the L-R tests at the sensors which opera.,e
with all threshold optimal decisions at the fusion with (P; = P,,P*) lead to the best performance 6
being monotonically increasing functions of the sensor at the fusion, since in this case, the achieved P, is
decisions. greater than or equal to Pt that can be achieved %41 ih

any other test at the sensors.
REMARK 4. If for some sensors Poi, 2 PF while If the false alarm probability o0 is not achievame
for some others PDt, : PF,, Lemma I does not hold. by an N-P test, a randomized N-P maximizes the
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1. INTRODUCTION

Optimal~Th SeiahDstib teroy of distrbuted detection is receiving a lot
of sensors process the data they receive and decide inVDecision Fusion favor of one of the hypotheses about the origin of the
data. In a two-class decision problem, the hypotheses
would be signal present (H1) or the signal absent HO).
These decisions are then sent to a fusion center where a
final decision regarding the presence of the signal is

R. VISWANATHAN. M4ember. IEEE made. This scheme. which can be termed parallel
S.C.A. THO.IOFOL:LOS. Member. IEEE decision making, is shown in Fig. 1. In order to

R TL.LLLRImaximize the probability of detection at the fusion center
Southern Illinois University at Carbondale for a fixed probability of false alarm, the tests used at the

fusion center and at the sensors must be Nev man-Pearson
(N-P) [3. 81. The above result is based on the
assumption that the data at the sensors Londitioned on the
hypothesis are statistically independent. If the conditional

Tep obleofd isillited detectim inovf N *15-i independence is removed, the threshold of the N-P tests
co-j~ee~.Th coflpuie o taes' I seialIsthetam ~ become data dependent and does not yield any easvconidre. hecoo~aadinofsaiio i sril I te eneha solution for optimization [ 161.that (j- 11th 56950.' peane. Its deiso to th i o n h We consider a serial distributed decision scheme

jib .me d@Cide. W&S the dechisio it rtaeviies and it - (Fig. 2). (in [41 this is called a tandem network). Though
Oheeryadg. Whom each Stane, iinplyl the %-onpesira to"., the serial fusion is very sensitive to link failures. its
the prohboilley ofd eia s mnieailleed far a given probabiity of performance analysis is of interest. In (41, the tandem
false deliee. at the Nih seqe. with tw samen, the seirial schmew network was analyzed with Baye's cost as the optimality
heis a performance bettler thi wr equal to the paoraild etl"rs criterion. Though analytical equations are given, no
scm anaalysed in thes lihration. Numerical ezaissPles Illustrate the performance analysis for typical channels or comparison
Oehaj optimisaiden by the sdeetisom of operating thresholds at the of performance with respect to the parallel fusion was

semenprovided. Here we aim to fill this gap.
In Section 11 we derive the relevant equations

describing the operation of the serial scheme based on the
knowledge that all the sensors employ the N-P test In
Section III we show that the global optimality is
guaranteed when each stage employs the N-P test
Section IV examines the conditions under which the
performanice of the serial scheme is definitely not interior
to the parallel scheme. Some numerical examples are also
presented to illustrate the performance.

11. DEVELOPMENT OF KEY EQUATIONS

Consider the serial configuration of distributed sensors
shown in Fig. 2. Denote the sensor decisions as u.. ;,

...u,,. The jth sensor receives the decision u -and its
own observation Z, to make its decision u,. The deci',ion
u.,, at the Nth sensor is the fused decision about the
hypotheses. We assume that the data at the sensors.
conditioned on each hypothesis, are statisticalhN

Manuscrip received Febraeriu 2. 1967; revised December 22. 1987 independent. This implies that Z, and au, -, are also
This work is supported by the SDIO/IST and manaedl by the Office c' conditionally independent. As mentioned earlier, the !th
Naval Research. Waswipoui. D.C.. under Contract N00Ot4-86-K.OS'5. sensor employs an N-p test using the data iZ .u
Authors curranit addresses: It. Viswartaiharand S.C.A. Throols The optimallity of this assumption is explored in the next
Depetnment: of Electrical Enpnseenno. Colqep of Engineering and section.
Technoklogy. Southern Illioss University at Carbiondale. Cartiondale. IL Denoting the distributions of Z, as p(Z 'H jar,!
629014603; Rt. Turinuluri. Departitent of Electrical Engineernug. Purdue p(ZI Ho). the likelihood ratio becomes
University. West Lafayette. IN.

________L(Z,. u1..IIHI)
0018-9231/8&0700-0366 $1.00 C 19111 IEEE L (ZJ, u,.-I I H6)
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functionI 41.

wheree

PD.,- I- Pr(u- I iH,) A
PF-_I H - - Ho) F,

%_ .k implies that the (i - lth sensor decides H,,. Cm"

k - 0. 1. and bwx) is the Kron .ker de0a func2on

defined as Pix) I / I 0 a00 X : " 0 an ( ) i h i e i o dF l . P a r a l l e d e c i s m n ft s i o n

function 1 141. Z

Therefore, the test at the ith sensor is given byptZ, IH,) Pt).,-, H, Si"•..

=t ifu, i

p (Z, ) [) P$.,- , Ai if-

X(Z, )I - PD,,-, H-

A r. if",) 0i (2 ESP.tgcsofuo

ptZIHo) I - Pb., - I N=

where t a thieshold to be determined. Z)
Equivalently, nc, P'

.% (Z J) i .,. if u,_ = I (3) =Lo tsO.o if u'_ 't 0

where 
p Z I

A(Z,) p(Z, I oH) Un ). a . sendioal ide pe nd

and Let

In , P..- I - PD. \ -I = Pr(A(Z,) > dP 1o,.o)

Fo hefrs tae "'., "Knoin th itiuino h bevtosZ n sn

1,0 Po.j -, I - PF., - I'1 
O

Many times it is convenient to use the log likelihood c t tH6)

ratio. In sA(Z) = De*(Zi). HenceP cPa t Pr(A*rZ,) > p iove th
"g' [t,*,. if U'_' - I!j 

j

".% *(Z,) i t ~ o f , _ (4 ) d, = Pr(A 0 Z,) > t•, l H .

Using ()e (6), san the conditiogal independence
and assumplic n, we have

( F~ - -P. Similarly,
"- In ( I ---- • . - , P o . - • I . N P D. -C , ( I - P D. - I) + d , P o . ,- . 8

For the first stage. t*,., - tr'o. Knowing the distribution of the observations Z, and using
(4). (6)-( 8), it is possible to compute the PD.,s

A. False Alarm and. Detection Probabilities recursively povided the PF.,s aure specified. If the PF ;S
ame kept the sane, the serial configuration exhibits some

byAt the jth stage. the false alarm probability is giver nice Properties 151. However, for a given PF..,, at the Nth
by stage, this procedure does not guarantee a maximum
P " Pr(A*(Z,) > t,.oHo, u_ = 0) Pr(u_- =- OIH,,) PD.-. In order to globally Optimize the performance. that

is to maximize PD., for a given PP.N. we need a
+ Pr(A*(Z,) > r.IHHo, u_, - 1) multidimensional search with respect to the variables
x Pr(u•• I I Ho). Pjs, s.i - 1. 2 ..... (N- 1). The results obtained usingthe numencal search procedure are presented in

• Section IV.
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In Fig. 3 a functionally equivalent form of the serial <
decision fusion is shown. Each sensor. except the first P"L" < IH = PoPr( \ - in i < AH

one. sends two decisions u, 0 and u i, depending on 4
whether the previous sensor decides a 0 or a I. ( )
respectively. These decisions are amved by using 3 - D )
The fusion center uses the decision from the first sensor /(I -P
and sequentially picks the appropriate decisions from the - Ifn- < ,A H
sensors to arnve at the final decision uo which is either I ,"r

u% ,) or u,. Performance-wise. the configuration in Denote the cumulative distnbutions and the denits
Fig. 3 is equivalent to the serial scheme. The equisalent functions of A* under H, and H0 as F*( ).f'i i and
configuration does not have the time delay problem Fj( ). f•( ). respectively. Since the left-hand side of
associated with the serial configuration. However. both (10) is one minus the probability of detection. we hase *
are highl. sensitive to link failures. 1- P = P DF•(,-, In (- e)

(1. ( PD) IrA -n('I j

":'••:"... ! -PEN• PFFS' X In P") Ii

I (lPF)FITA, - In (I - P))

"We require for a fixed Pý, and for any arbitrar, but

Fig. 3 Functionally equitatent configuration of seinal net' rsk fixed PF at the (N - I )th stage. the Pu , to be a
monotonic increasing function of the P0 at the i V - Hrth
stage. Observe that if the P0 of the i.\" - lIth stage is
changed, then the threshold A at the .Nth stage .hanges in

Ill. GLOBAL OPTIMALITY order that PF." remains fixed. Taking the der|•atvoe of

The global optimization problem is to find the tests at (t21 v,.r.t. P0) and equating the result to zero. Ae obtain
each stage of the serial configuration such that the PF -- PF

probability of detection PD..v is maximized for a given dA •ofo(x,) - P
PF..,. Here. we show that the global optimality is d = PF •(.x. -÷I -PF)ffx.) P13)
achieved when each sensor employs the N-P test.

THEOREM I. Given that the observations at each where

stage in a serial distributed detection environment with V x, = A - In(PD/PF)
sensors are independent identicall). distributed (ID). the (
probabili'v of detection is maximi:ed for a given r. = X - In
probability of false alarm. at the Nth stage. when each
stage employs the N-P test. Similarly.

dd [- Pt")..F..) -F•x,
PROOF. Consider the last two stages. At the ,Vh dpo = Fl(x 1 ) Fl(x.)

stage. the N-P test using the data (Z,. u~v_ 1) maximizes

L a In p(Z ,., u _- I IH ,1) P P '
pL*Zor ud - In pIZ . +3(. Le [)X. ( d' - 1 0

A * .- .In ..IH, )+ (I-Po)f9(x:) I P, I

p(Z5 IHO) 1 P )

Call ,%-(ZI). PF., -,, and PD..v-, as A *. PF and Po, A reasonable requirement is P0 > PF. This implies that

respectively, for simplicity. Then. Fri(x,) - F•'(xt.) is less than zero. Hence. a ,utt,,ýient
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conition for 11ov> 0 Is that the term in the acwkets IN - 1). We have recursively used the one-dimnensional
dPD optcnu~aton routine PMIN (15) for this purpose. The

in (14) be less than Or equal to zero. After some algorithm also equires the Zero Of a function in order to
simplification, using (13). we obtain the following obtain the thresholdS at each stage (7). The ZEROIN
sufficiency condition: routine in 1I51 is used to solve for the zeros. The

convergence to the Optimum value is obtained in fth case

1!of 2 sensors and 3 sensors. For performance comparison.

1_ _ -S eIS: we also considered the following Parallel fusion schemnes.
two sensors, identical thresholds at the sensors. AND.

p ,~ iOR rules, and three sensors, identical thresholds at the
Ho~eer.fro th reulttha theliklihod ati ofthe sensors. AND. OR. majority logic rules. In the three.

lkhhoixieratrom th r, ul t the likelihood ratio itel the.pp 41 sensor case we also consider two other rules, termed F I
lIktiho raxio is theatik1lih1od ratiofe wits equlfity P. and F2. Fl I oresnds to the Boolean function u,~

it ol~w~ hatuli i ~ai~ded it eqaliy. i ,u3 and F2 corresponds to uo . u (,- u3. For
FlI and F2. sensors numbered 2 and 3 operate at the

IV. PERFORMANCE ANALYSIS same thresholds. In all the cases the observations at the
senson, are taken to he UD. Two channel models. namelk

A. Numerical Results the constant signal detection in additive white Gaussian
noise (AWGN) and the detection of a slowly fluctuating

By using the algorithm developed in Section 11. we Rayleigh target 13. 121 are considered.
can obtain the best PDA for a given PF., by using a Figs. 4-6 show the performance of two sensors In
search procedure on the variables. PF,. i -IAWGN channel anid Figs. 7-9 show the Performance

~ I-

-3'r -2 11

L09-049 ',F AS L4RM

Fig *L Perfoninance of serial scheme with two Sensors: constant signal in Gaussian noise Wad siial-bo-notse rano of 10 dB
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*

with three sensors. The curve named parallel is the best detection. In Figs. 13-15, the performances of FI and
of the several parallel decision rules mentioned above and F2 are equivalent and hence the corresponding graphs
the data fusion corresponds to the centralized detection coincide with each other.
scheme which uses data available at all the sensors. With S
two sensors, the serial performs better than the parallel, B. Comparison with Parallel Scheme
especially at larger signal-to-noise ratios. With three
sensors. the performance of the two schemes are nearly An optimal parallel fusion is the parallel scheme of
the same. Also, either of them is poor compared with the Fig. I which gives the largest possible probability of
data fusion. This is due to the loss associated with the detection for a given probability of false alarm at the
distributed detection. In Rayleigh target detection with fusion. Only a monotone increasing switching function. 0
two or three sensors, the OR rule is better than the rest of called the positive unate function (17). qualifies as a
the parallel fusion rules. Moreover. the numerical candidate for the optimal fusion switching function. This
computation shows that the serial is equivalent to OR for can be easily proved from the requirement that the
this channel. Theoretically establishing the equivalence optimal scheme employs likelihood ratio test at the
has not been possible. In the sense that the serial is only fusion. One property of monotone increasing function •
as good as the OR rule, one can term the Rayleigh that function, when expressed as a sum of products does
channel as conservative (Theorem 2 in the next not contain any complemented variables. A switching
subsection implies that the serial should be at least as function which can be expressed as a sequence of to
good as the OR rule). Figs. 10-15 show the input and one output functions is a positive unate function
performances of different schemes for the Rayleigh target and hence qualifies as a candidate for the optimal parallel

;R-or .ASE ALR
g

"">5 .-30o -4'.20 ' -30• "--?3o -o '.0 0.oo

Fig. 10. Perforiance of serial ad psallel sch•e•ie for Rayleigh tarle detection with two seasor: energy-to-noise density ratio ,, r'e
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fusion function. An example of one such switching the parallel is contained in die mapping of (u I. Z., to ii,
function of three variables is shown in Fig. 16. Fig. 16 in the serial. the detection power P&.2 attained at PF..: in
also shows the serial scheme with three sensors. the serial is gr'eater than or equal to Po.2. Similarly. uo in

Theorem 2 (given below) establishes a sufficient the parallel is a function of u2 and u3 only whereas in the
condition for the performance of the optimal serial serial it is a function of fi, and the observation Z3. It is
scheme to be not inferior to die performance of the observed that the J, of the serial has the same false alarm
optimal parallel scheme. Pe;.2 of the paralliel but has a greater than or equal po%, er.

THEO~m .I theswichig fiirton orreponing For the serial case. the proof of Theorem I shov, s that

TEOR. --------------------------------------------

to heopiml arlll uson anbereliedintemsof the detection probability of any stage operating at certain

a sequence of two variable functions with single output. fasalrisamnte odcaigfutonfththen the optimal serial scheme is b strer than or equal to detection probability of the previous stage operating at

the optimal parallel scheme. some false alarm. It then follows that P&.o s greater than
or equal to PO.o. By induction the proof is complete for

PROOF. Consider the co one su in which any N. Conservatively it is assumed that the false alarm
the decision variable u i in Fig: 16.a) and M a idenical at each stage of the serial is identical to the one in thefl
and each stage of the serial scheme operates at the parallel schees. If the serial scheme false alarms are
corresponding false alarms of the parallel scheme (in sie optimized then definitely Po.o cannot be less than Po,
Appendix we show that it is possible to achieve such an From Theorem 2. we observe that for the case of a o
operation). The up in Fig. 16(b) is a function of u, and sensorsf the optimal serial is better than or equal to the
the observation Zn. Since the mapping of (un. u.) to i: in optimal parallel scheme. With three sensorst it os better
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Fig. 161a). Example of two input and one output parallel fusion .0

function with three sensor FiS. 16(b) Seral scheme with three wen•,o•
S

than or equal unless the optimal parallel is a majority APPENDIX
decision logic. In such a case, only an actui o performance
assessment determines which is better. As mentioned It is shown here that any false alarm is realizable at
earlier, in the case of Rayleigh channel with two or three any stage of a serial configuration. Let us denote for
sensors, the numerical results show that the optimal serial simplicity PF.j - I, PF,,. Po,, -. I.. 1.,.o, a,. and b by a. S
is just equivalent to OR. In this sense the Rayleigh co. 3. it, to, a. and b. respectively. Therefore. using (2)
channel can be termed conservative. Also, in Figs. 7-9. and (3). and (7)
over the range of false alarms where the parallel oto - 0 - c ia + a b
outperforms the serial, the best of the parallel is the
majority decision rule. In the range where serial is better. It-o
the best of the parallel belongs to the class of Theorem 2. t t I -

t I -- " (A1)
V. CONCLUSION f3

A serial distributed network of N sensors detecting t The likelihood rauo A (from (3)) and hence a and b are
preseneor dabsence of a signal is analyzed. When the continuous functions of t. Hence. for a fixed a. a,) is a

presenceor acontinuous function of t. Let the support of the
sensor observations conditioned on the hypothesis am distribution of A be between it and t. (t, - 0 and tr -
statistically independent, the sensors employ N-P test for =). As to approaches ti. a. b, and ao approach I and as t,
maximizing the detection probability for a given false roach ti, a. b. and a0 approach 0. Theretore. any
alarm probability at the Nth stage (Theorem I). For ao in A( I) can be obtained.
certain noise distributions, the parallel structure requing Please note that the method employed here is
its fusion scheme to belong to a certain class of switching suggested by one of the reviewers.
functions, is not superior to the serial scheme
(Theorem 2). As a drawback, any serial network is REFERENCES
vulnerable to link failures. Some numerical examples
illustrate the performance of the optimal serial decision (11 Taeny. R.R.. and Sandell. N.R.. Jr. (1981)
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three sensors, the perfornmances of the serial and the OR [21 Chir. Z.. and Vaubasy. P.K. (1986)
fusion rule are equal. For AWGN channel and two Optimal dea fusion in multiple sensor detection ,Ntemssensors. the serial performs better than the parallel. IEEE Transactions on Aerospace and Electronc Ses

.AES-22. I (ian. 1966). 99-l01.
However, with three sensors the performance is [31 Stff.iv . R. (1966)
essentially the same. It is not known whether there exists Dimsbiad nradtm deiacion theory
any channel, practical or hypothetical, such that the serial lEE Procnrdqs. 113. Pt. F. I (Feb. 1986.1.5 -0Ao
is better than the parallel for a distributed network with 14) EJchia. L.K. wd Tenney. R.R. (19"2)

thriee or more sensors. Considering the complexity of the D net'oon.
In Proceedings of Ie 21st IEEE Conference on Detston andserial scheme and the results from this limited study, the Cwro~ . Dec. 1962. pp. 6M-690.

choice seems to favor the parallel fusion for the (51 Viswanamu. R.. Thomopoulos. S.C.A . and Tumuwr' R

distributed detection problem. (1987)

374 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-24. NO 4 IL LY 11)Ax

S 0 0 S 0 0 0 •



Sina dam"inw aMultiple "amo fusiae

In Pracesdiegs at' the 1987 Comyveact am I~rmntion (II I Va.Teaes. H L (1966)
Sciences and Svsuamn Comoreac. The Jond. Hopian Diriftaom. Esamiaton and Moduati~on Thro-m. Vol I
Uniuery. 1967. P. 12C Now Yo&: WLI3,, (966

161 Thatimpoesla. S-C A.. Visweamaia.. R. and Scugaultas. D K 12 Di~ramo I V - and Rubin. W L t 1961)4
(W) ~Radar Defetaiaa

Optimal decisio fusas"t vin wluple senior system Egeot lft raeHd g
IEEE ?),tansacomis anAerOSAWti and Efk'ucv SvsteDH ahwadCif.N rnc-Hi.(6
A13-23. 3 Seps. 1967). 64-653 1131 Snndsh.MFlO. andftajasekam..P K. (1979)

f~I Sad0"d. FA.- (1966) Am' Intodwrion to Stauunwal Theory of Sts"a Processing

Hypotheses testing to a distiunbeti eaviroartent New York: Wiley. 1979
IECE Tramuactions on Aerospace and Electronic SvizeM.s I141 Mood. A M . Omaybdll. F A- MA andos. D C 194
AES-2.2. 2 i~tar 19960. 134-137. Intuod-ucw to LAW Theory of SAmauStics

(91 Thomopouiaos. S C A . Viiwanaaah. R . aNd Bougouizas. 0 K New Yo&k M~cGraw-Hnill 1974
Optimal and suboptimalu distributed decision fusion (151 Forsythe. G E . WAn Malcom. M A (1977)
To be pul~ished.p~rVthgJ' ahaaha oepas

[9[ Reibmian. A.R. sand Nolte. L.W (1987) Englewood Cliffs. N V Prentice-Ha". 1977
Optimal detection performance of distrbuted sensor systems.
tEEE Transo~cnons on AeroVpae and Electronic S'.strns. [161 Tsitsiklis. I and Athani. M. (19651
AES-2J. I (Jan 1967). 4-30ý On the compiexlty of distributed decision problems

[101 Kelstrom. C.W ((965) IEEE Transacnohu on Automatic Control. AC).ý 5 (May~
The performance of sensors connected in parallel and in 193.4 -4
coincidence. (171 Harrison. Mi.A. (1965)
IEEE Transactions on Conismuturacuams. COAEIJ (1965). Introduction so Switching and 4Automnata Theorv
191-195. Sew Yoit: M~cGraw-Hill. 1%5

VISW NATAN E AL SEIAL ISTIBUM DECSIO FUNrIO 37



p

I)

Ramuianaayaiaa Viswanadmn (S'81--M'83) received the BE. iHons.) degree in
electronics and communication engineenng from the University of Madras. India. in
1975. the M.E. degree with distinction in electrical communication engineering from

the Indian Institute of Science. Bangalore. in 1977. and the Ph.D. degree in electrical
engineering from Southern Methodist University. Dallas. Tex. in 1983.

From 1977 until 1980 he worked as a Deputy Engineer in the Digital
Communication Department of the Research and Development Division of Bharat

• Electronics Limited. Bangalore. India. Since 1983 he has been an Assistant Professor
in the Electrical Engineenng Department at Southern Illinois University. Carbondale.'Il. His research interests include detection and estimation theory. statistical theory of
communication and spread spectrum systems.

Stel.. C.A. Thomopoulos 80-M *83) was born in Athens. Greece. on June 15.
1955. He received his Diploma or Electrical & Mechanical Engineering from the
National Technical University of Athens in 1978. and both his M.S. and Ph.D. in
electrical engineering from the State University of New York at Buffalo in 1981 and
1983. respectively.

Since 1983. he has been an Assistant Professor in the Department of Electricai
Engineering at Southern Illinois University, Carbondale. Ill. His areas of interest
include data networks, distributed processing, robotics. artificial intelligence, and
neural networks.

Dr. Thomopoulos is a member and Licensed Engineer of the Technical Chamber of
lo t Greece.

Ramakrlshn J. Tumuluri rec.ived his B.E. in electrical engineering from Gujarat
University, India. in 1984 and his M.S. degree in electrical engineering from Southern
Illinois University. Carbondale. Ill. in 1987. He is currently enrolled in the Ph D 0

program in electrical engineering at Purdue University. West Lafayette. Ind.
His research interests include detection and estimation theory. computer

networking. and artificial intelligence.
He is a member of Phi.Kappa-Phi and is a gold medal winner of Gujarat

University. India.

376 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTENMS VOL. AES-4. NO 4 Ji. L': 1,KK

• S S 0 0 • • 0 0



ON. MME3 TrUNM4Acn OWd AUn'oN~nC CONTROL VOL 37. NO. 9. SBPEMMUIR 1"2 4

D ndDosedsm wfth CRSmaUft Season a"d

Swuma c. A. Tmampouaos and Nickewis N. Okeilo

AWN-The PIUtM d MINNMSd d8110111 ul" mmuldag 5Wi
gea is do S pesoe of ~ h coosl Ma ahmathat wfth MaY o-

cho of khomdo ( .) 1NINO ml ~ MIsNMli esiodmism We
MAN-I ul$riud O Aaw2 19ft revised May 24. 1991. This

work wui omppn md bym* SDIO/WT NMahgd by fte Office of Navel
Rinmazch imisi Co P=014-k45U.

The amabom an ulth the isoms mmd Coosro Systems Laboratory.
thw Deputmiin of limlak mmd Computer Eapacnog T1he Pennsyl-
vumu Stow Uahwokiy. ULweuiiny Pork, PA 16802.

MM3 Lag Niamer 920Mfl.

0018-9296/92303.00 0199M1IM

0 S ~~0 000 5



MEEE TRAN5ACro0S ON AUTOMATIC CONTROL VOL 37. NO 9. SEPTEMNER 1992

Cosider a asysWli m m is.M Sl aw 52.3 •,b, b Si 1 die PrImac
mintI N51S1I~ hr as tm declaims me, While 52 ia a cseamahl?
a itsM seaM11 ed 411 esidd.th d ada*116 Sm. I sU11 baedWS byit1.her
IsM sesiagabs dotsy b t dadim o Sw wheen rausaisi bw slaw
a do, raw data ab to St a*. er k is. lmadar cestalas reqila.
ci ealse mba lak s amasaw do dedislm est asser £SL. Radai
andl amisaramis reqaut sdbsuam aimlyad isd sawinukl relsij am PAN
pr Aam amid compared har Gimefe sailma dew-tadhqa yleligh claas.
as For mtwi desdsisi abing s ahs . assiaemd opeemluatian Fi 1. Dual-Seorn configuration in consultaon
PW s brsss. a tm itd wimes. swab"s is sis"S to setleb~ certala a ps
W desinp cirtra thaet we caidler sasetial hr maser 1alse.

in Fig. 1. Due to bandwidth limitations and the sensitivity of the
1. INTRODUCTnON data, no transmission of raw data between the two sensors is

Considerable research has been focused lately on the problem allowed. The sensors only exchange request signals and deci-
of distributed decision fusion [1)-[61 where a number of dis- sions. (Additional quality information bits. such as the degree of
tributed sensors receive data from a common volume, come up confidence associated with each decision. could have also been
with a first-stage decision, and then transmit their decisions to a included in the scenarios that are considered without affecting
fusion center which arrives at the final decision by fusing the the structure of the tests significantly.) We present numerical
sensor decisions (or some form of compact information received and some analytical results only for the cases where the primary
from the sensors). The main assumption in the bulk of the sensor transmits request signals to the consultant sensor, %hereas
related literature is that the transmission of information from the latter relays only its binary decisions back to the primary.
sensor to fusion (and possibly the opposite way) is done at no and no exchange of quality information bits takes place. Ran-
cost. This implies that exchange of information between the dom consultation and nonrandom consultation schemes are con-
sensors and the fusion is possible at rates limited only by the sidered.
physical bounds of the channel capacity. The main emphasis is In the analysis that follows. we assume that the probability
then placed on determining the optimal sensor configuration distributions of the observations for both sensors under either
(parallel. serial, or combination) (51-(61, and the fusion logic hypotheses are absokwusy coantnuous with respect to the
(AND. OR. etc.) for an array of sensors [5)-(6). Lebesgue measure and that the associated likelihood ratios are

The problem of team decision with risk is common in C' 3Pce*ut condanous functions of the thresholds. Furthermore.
(command. control, and communications) applications (71. but we assume that the decisions of the primary and consulting
not limited to those [13). Practical application areas for team sensors are muunliy i condiatioed on each hypow esm.
decision with risk extend to other fields, such as medical diagno- Numerical evaluation of the optimal solutions for different for-
sis. cryptography, etc.. where exchange of information among mulations is performed in additive Gaussian noise channels [9]
decision-makers is not free and communication cost is a factor. and slow-fading Rayleigh channels [31 [10L. The following nota-
The communication cost can translate into the risk of revealing tions will be used in the sequel.
one's position in C3 applications, actual bandwidth limitations
for transmission in bps (bits per second), cost in dollars of a NOTATIONs
leased communication line in commercial applications. or a PD, Detection probability of sensor Si operating alone.
consultation fee for the procurement of an expert opinion by a ,- ,2.
consultant. Pm, - Miss probability of sensor Si operating alone. t-

The problem of distributed detection in the presence of com- 1.2.
munication cost has also been considered by Papastavrou and PF, - False alarm probability of sensor Si operating alone.
Athans [7L, In their formulation, they considered symmetric ,2-
operation schemes for both the primary and the consulting PDz -Detection probability of Si and S2 in consultation.
sensors, in a way that ignorance could be the end result of an PW2 - Miss probability of St and S2 in consultation.
exchange of information between the sensors even if a price tag PFI. - False alarm probability of SI and 52 in consultation.
was associated with the information exchange. A general cost P0  - Team detection probability.
was then attached to each decision under the tested hypotheses, P_ - Team miss probability.
and the likelihood-test was shown to be the optimal decision PF Team fale alarm probability.
rule under o-e given operating schemes [81. P - Request probability (it determines the consultation

In this note, we consider the problem of distributed decision level).
making with two consulting sensors in which every inter-sensor
communication incurs some risk. thus making continuous sensor In the nonrandom consultation case, explicit reference to the
communication a very expensive and prohibitive proposition. We sensor threshold(s) will be required. The notation Px(t,') - Pý,
are interested in determining the optimum decision scheme and Pix(tZ) :- Pxj, X - F, U, or D and i -1. 2, will be used to
when the structure of the consultation scheme is specified given indicate the false alarm (X - F), mins (X - M). or detection
that a certain amount of risk (or communication cost) can be (X - D) probabilities of sensor Si operating at thresholds , or
tolerated. Given the structure of the consultation scheme, we t7. The notation P,, and Px, will be used to make the expres-
seek optimal decision rules that minimize cost functionals that sions more compact when needed.
involve the probability of false alarm, the communication cost
and the probability of miss. Different possible formulations are Ill. RANDOM CoNULTATION SCHEMES
beingl discussed in this note. A. Random Consnon wieth Fired Probbiaba and Reprocessing

I. TEAm DEctsioi ScHEMEs Pftblm Formulation

The team-decision scenarios that we analyze in this note The primary sensor SI consults S2 randomly with j fixed
consist of a dual-sensor system and binary hypothesis testing as probability of request P,. When S2 i. consulted. it rela,' its

0 0 0 0 0 0 0 0 *
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decision to Si1. which in turn reprocesses it with its own raw data
in order to come up with the final decision. The oblective is to
awtumizte b team miss5 probability PA, (euialently, aimz
the probability of detection PD) for fbied false alarm probability
P,. The distinguishing feature of this scheme is that the decision sorI*t"~ coartaluries8o

to consult is random and is made independently of the degree of stda10s/11
confidence that sensor S1 may have oin its initial decision ul./
The major advantages of the schemse are that: a) it is simple to / I 10% *04%i coarsurtl4v e. $1 41 It

probabdiiie of the two hypotheses which may very often be

unknown in C' and other applications.
The optimal random consultation scheme is equivalent to

switching between the ROC (receiver operating characteristic) __________

curve of S I alone [91 and the ROC of the serial combination ofo
S I and S 2 (61 (Fig. 2) according to a specified request probability
P~,. so that the probability of detection is maximize~d for a bied Fig. _5 Receiver operatfing characterazica (R00) for different lecls of
team false alarm probability a0 . (For the reader's convenience, random request.
the optimal decision test for serially connected sensors is sum-
marized in the Appendix.) The team probabilities are easily (6) implies that PR~D 1 when w, # 0. which is true if PD,.,>
obtained as PD. The solution &I - 0 implies Pi, - 0, which is the solution

P0 - PD01( - PRt) *' P012 i (1) when PD12 - PD, and Pj,11 , Pr,. Furthermore, under the con-

PM- PuI(l - Pit) + Pul2R (2) tinuity assumptions, the optimal solution is unique.
P'ootf Under the assumption that the ROCs of Si. S 2. and

Pr- P,,i(l - Pit) + PP12 P't (3) the serial combination S12 are strictly concave the N-P test

where I in the subscript indicates the sensor Sl operating alone, maxzimizes the probability of detection at each one for any fixed
and 12 the serial combination of SI and S2 to be designated as false alarm probability (91. Thus. for any Pj and P,12 that
S12 hereafter. The random consultation decision problem is satisfy the constrait P, - ao, and for any Pit, the detection
mathematically formulated as follows: probability is maximized if the N-P test is used under both the

stand-alone and serial modes of operation. Substituting PD and
Maximize PD s -t. P,, - a0 and 0 :s PR :s 0 (P1) P, in (P1.1) from (1) and (3), and differentiating I with respect

Using Laglrange multipliers w, and &.2, the constrained maxi- to P,,1 and PF,12 (4) is obtained. Differentiating J with respect
mization problem (FD) is convcrted into the unconstrained max- to Pg. setting the result equal to zero and solving for P., (6)i s
imization problem obtained. Differentiation of (P1.1) with respect to ;A results in

max J-=PD + 0D(oal - Pt.I + -..W2 [( 01- PO)PR-j Fromi(7). it follows that ju, -(P, - p)Pt -0 hen w,. .
2However, from (6), 0~2 *O0implies that Pit # 0. Hence. P,, 3

(P1.1) in order to satisfyI&' -0. On the otherhbandfrom (6). w., -o0

where j&2 is a positive slack variable that is used to convert th if and Only if P0 12 - PD1 and PF12 - P,,. in which case P,, -0.
ineualty onsraits n p ino a eqivaentequlit ~ and thus A - 0as well.

strqaint. Thestmaximintion Pint(o1 is eund aerstood uawity repcton The uniqueness of the optimal solution follows from the
srithe choie ofxoperationg pin ofIA is anderstooad wthe levpelt tof absolute continuity assumption and the concavity of the ROC.
tchonsitaeiof oprtn on-;o adS adtelvlo from which it follows that (dP01/I9P,1 ) and (iP0 12/dPF::) are

consutatio P".strictly monotonic functions. Hence, for each (a,. there exist
D. Random Consulrauion Optimal Soludio unique points on S1 ROC and on S12 ROC for which t(ta-ifh

Theorem 1: If the ROC's of Si, S2, and the serial combination are satisfied.

of SI and S2. S12 161 awe strictly concave, then the optimal C. Numerical Results
solution to problem (P1.1) and thus (PI) involves a Numnerica results of the optimal solution to problem (PI1 in
Neyman-Pearson (N-P) test under either stand-alone or serialadive ausnnoechnesndlw-dng aIeh

modeios tof oprtio.Te eutoptmloeaigponsaegvna channels are given in Fig. 3 for different request rates. The
soluion to he quatonsnumerical resuldts throughout the note are obtained assuming

d'JDl '9PO2 () the following statistical models for the two channels.
aw i (4), Gaussian:.

Obsemvation mnodel at each wsenor r - G(0. 1): H0. and
ao P,1(1 - PJ) 4 PF12 P 4 (5) G,(s. ly H1. where Gr(a, S) designates an a mean and v.ariaince

(PD12 -P 0 ) + .,I(P~i - P,12) 00 91 Gaussian distribution. If It is the threshold at the sensor. the
PA (6) operating false alarm and detection probabilities (P,. P4, a .re

052 given by

A 0.(7) Falseailim:pobabuiry: P,.-Q(tb)

Hence, the optimal solution involves two N-P tests operating Deelo poa~y PD _ -~t rf) - Q[ Q '( P,)-.
at points of the S I ROC and the S12 ROC with equal slopes
that satisfy PF ao and 0 sPt p. Corsdtion (7) along with where QC. 1-so) is the cumulative distribution ruanction

* 0 0 0 ~0 000 *
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(CDF) of the standard normal, Q its inverse, and i - SNR at -.0
the sensor in decibels. -

Fabse ailar probabd~iy: Pp - A(I ) 1 04

Dteachonprobbdbiiy: P0  0.4 lima fe

where A isthe threshold used. and e the SNR atthe sensoruin % IJt
From Fig. 3. it is easy to see that the optimal solution to 0.GAO

problem (PD) is: a) monotonic with respect to the information
fusd independent of the quality of the sensors; b) monotonic 0.20
with respect to 00; and 0) independent of the a prioni uncer-
tainty. These properties are analytically proven in (121

D. Random Comidubadon Suibomu Sobibon Moo2.0

A suboptimal solution to Problem (PI) is obtained if Pp,1 and .r--o t 0
P,12z are constrained to be equal, thus equal to ao according to Fig 3. Optimal random Consltauion detection probability versus SNR
(3). The suboptimal solution to problem (PI) involves N-P tests for faUs alarm probabilit AO - 0.001 And different request rates.
for both S1 and S12 as well. The suboptimal operating point is Channes Gaussan (inolid) and slow-fading Rayleigh (dashed).
given as a point between the S I and S12 ROC curves at level ao
determined by the equality P~t - j% (Fig. 2). The system PD - 10
PDI1i -AD) 4-PD12~ A0 121Numerical resultsof the suboptimal lG-
solution to (P1) in Gaussian and slow-fading Rayleigh channels a i

are shown in Fig. 4for 0 - 0.25 and 0.75. For comparison. the
optimal random consultation ROC's for the same values of 00
are overlayed in the same figure. The ROC's of the optimal#
random consultation scheme are slightly (but visibly) superior to l'*
the ROC's of the suboptimal scheme for the Rayleigh channel. 0.40
but Almost identical (superior only on the third significant digit. I
not visible in the plots) to the suboptimal scheme for the----
Gaussian channel. I .

IV. NONRANDO CON~SULTATION SCHEMES WmfoTOUI
REPROCESSmN 0.20

A. Opeundng Scersano

In the nonrandom consultation schemes we assumie that the 0.00:0j 1M j ob w"ý
decision to cnult is made only when the initial decision ul of s15.0 mob.(d 0
SI falls within the indecision region (see below for definition). W4Coprsnf pobb morteu pW o-
otherwise. ul is taken as final if it falls outside the region of random schiem for request probabilities 0.25 and 0.75. Channels: Gauss-
indecision. While several different operating scenario. are P0"i1 ian (solid) And Rayieighi (dashed).
ble. we are only concerned with the case in which Si may
consult S2 but does not relay any quality information regarding
its initial findings. When reqested, S2 processes its own ra either cow. no consultation takes place And the decision of S I is
data taking into amcount the fact that it has been consulted, and finl. When Ai(r,) E11' (t',tX Si consults S2 without transmit-
transmits its decision u2 to SI which then treats it As th fina ting Any quality informtion1 About its preliminary decision to S52.
decision. Hence, no reprocessing takes place at Si after consul When S2 is consulted, it processes its data using an LRT
tation.1 conditioned on the event that Si's decision falls in the indeci-

We constrain. the consultation schemes to the following clss sn region, 1. induced by the fact that it has been consulted, and
Let A,(r4):- (P(rjlHj1/P(rgH0 )) designate the likelihood ratio relays its decision u, to St which takes it As final for the entire
MLR) at the ith sensor using data P, a -1,.2. Assume that Si ha system- Thus. Si decides According to the following scheme:
an uncertainty region (t,,r, . When A1(rl) > *7j, S1 decides in A,(rl) 5 tt: chooseH0
farvor of H,. When A10r1) < il. S1 decides in favor of H9. In t It)<tj hoeI(goaie

I A miore 5/menc scnari 5n thand the ooe un inrno osla A1(PI) z t*7: choose At(8)
tion would cail for reprocessing of u2 by S1 along with he ow raw datam
during cc ualsation. However, the performansce of th /mt o while S2 employs the familiar likelihood ratio test given by.ai would be very close so the 'nomuymmetric. nonrandom request
schemse considered in tii note. a it can be seen from Fig 9 where the N,
performance of the serial scheme (which corresponds to the optimai. A2Ut-1it2(9
nonrandom request sceewhen the consaltation rate is 10D%) is A2 Ho1 I)~z 9
compared to the optimal. nonsymmetint. noorandom request sceeat
opia conmaitation rate. If uo denotes the final decision of the system, the overall miss
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probability PM is given by Hence

PMf P(Me 01H1 ) f, JdP(A,1H0 )

- P(M 0 - 0l 1". HJ)P(uilHJ) zi 2  i".-: (8
f" dP(AIH,

- (U0 -Olaii - 1. H')P(u1 - 11H1) Therefore, it follows that

+ P(ta0 - Olaa, - 0, H,)P(u, w 01H,) PA(2u

The An: pan of the right-hand side of (10) equals zero, while -J dP(A 2(r2)IHL), for 1-O.l. (19)
the second arid third pans can be simplified to give k 1

Pw =P~u = 1HI + ~u,- 0lu1 - 1. H, )P(u, - 11H,). Using (19) and the more convenient notation with the thresh-
- P~~ - lH1 * Pai ~olds t;. tr of SI. and A~ of S2 explicitly indicating the correspon-

(1) dence between the mod of operation and the related probabili-

Expressing P,~ in terms of the likelihood ratio A10'1) and ties (12H15S) take on the more compact form
A (, 1). we get PM PW(('i PM('i(P2 ~ I PW(tl)I (20)

P, dP(A1(r1)IH1) -0 P001) + PQ;)(P,(O; - 4(4)1 (22)

P5-P0[,tF PAID ) + (F01 -)(P (4) - PF'M (22)1

dP(A,(r,. It, - I)1H1)ft' dP(A 1(r1 )1H1). (12) Pi OP~t ~,A+( OP~, P (; (123)

Note that the expresuions for P5,. P, and Pw are subject to
Dropping the arguments from the LR's A,(rI) and Az(rz.ut the constraint r' x tt which in turn implies that
1) for notation&[ compactnesian expression for PD is ob- ') (24)' ) 5

tained from (11) FtI)an At IY (4

fin[ the nonrandom consultation framework described above.
P0I) f dP(Al1H1 ) + f >dP(A21H,)f'dP(AIIHi). the team-decision problem can be formulated as a constrained

a, or unconstrained optimization problem. A number of different
(13) formulations are mneaningful depending on the application and

the objective. Using (20)-(23), and the constraint (24). it is
Similarly, for the overall false alarm probability wie obtai possible to detemine the optimum thresholds t,, ij.. and tj

numerically for a wide range of formulations. In this note
P, -f dP(AIH0 ) + f dP&(A21H0)f dP(AtIH,) however, we are only concerned with one nonrandom consulta-

A>,;A 2 >a a ~tion formulation. Additional nontrandom consultation formula-
(14) tions and numerical results are available in (121.

and for the probability of request H. Piooblii FoIWiudatWio

I ~We formulatie the nionrandom consultation decision making
PR ff"PA [dP(A,IH.)P, + dP(AIlHI)(I - Po)). problem as follows.

(I)P 0 abjecttKoPp - o and P5t -q (P2)

Note that it is necessay to uxpress the likelihood ratio The inequality constraint in P5t andi the N-P test optimal
A2(01 ,u, -1) in termsof A2 02)in Order to beable to evaluate solution to each subproblem of SI operating alone or S2 in
the integrals 1A,.,, dP(A2IH9) and I~,adP(A21Hi). Taking consultation with Si. guarantee the existence of the optimal
into account the assumption that III and U2 are independent solution. However, the optimal solution to problem (P) cannot
cindlitioned on each hypothesis be obtained anallytically. Using numerical techniques. the opti-

P(P2111 Iff' Mmal solution to problem (P2) (iLe.. the optimal thresholds) can be

Azr Iu ) - P.2 u1 - l,) obtained via a search algorithm. Using the more compact nota-
P~2 u, 1111.) H., tion, Pý, and Px', from the earlier defined notations. (22) and

P~rZHI)PuI -11HI M,(23) are written, respectively, as
P~2I;t~u t2N, N (16) aO - P;1 + P;2[ Pjr - PF1(25)

-P(r 2lH0)P(u1 - IWO) , and

The maximum P0 is found by searching over P;, in the range of
, d(A1 H1 )H, 0, 11 and using (25) and (26) to determine P;1 and P;:. subject

-2rz l ) -A 2(r2) k ~ t2 . (17) to the constraint p;I a pi (Since to ;ttpf"dP(AIl H0) HLenma 1: Let 11 be the optimal threshold of 5 1 for
problem MP) when -0, i~e., when S1 operates alone at false
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alarm probability ao Then, for every 00 > 0

> t.'! 1 (27)

wbere t and ta, ar he thresholds of S I for the optimal 0.000-0
solumro to problem (M). Furthermore, in order to improve the
performance of the consultation arrangement beyond that of S I
operatting alone at the same false alam probability, the optimal 0.4 04
threshold for S2 must satisfy the inequality go-to 111-0.0

J"l dP(A1 IHi) 10.40 0.40

Ifthr are no 0 .t 1. tO,: such that (28) is satisfied as a strict -

*inequality, PR - 0, ts' - t:- t,..., and PO - P00...001---9 W00

Pfroof From P, - ao it follows that tj a ti..- Equating -5.0 5.00 Ism0 25.00
the false alarm probability of the two-sensor system with that of ar**IO . 0
S1 operating alone. it follows easily through elementary alp. Fit. 5. Detection (solid) and optimal nonrandomn request (dashed)

braic manipulations that probabdiites versus SNR for a Gaussian channel. False alarm probability

dP(AIHO) O 0.01 aWprior probability PO 0.5.

J dP(A2(r2.)t H0 ) - 1 (29) 1.00 1 .00
'i~'i f~'dP(A11H 0 )

from which (27) follows. Using (21). the requirement PD > 0.80 0.00
P~l(sl ) translates to (28) with some elementary algebra. If (28) 11. a 11n-0.00
cannot Lesatisfied as a strict inequality, it implies that for every
4s1, tj) the ratio on the RHS of (28) must always be one, since jO.60 --

0 .b6i
tthe LHS of (28) is a cumulative probability distribution which by I 1--*
Sassumption is assumed to be a continuous function of the

limplies thatt, - t'j- j. ,from which itfollowsthat PR -0 Wj& -I

0.10 - - - --- -- -- -- -- -020C. Numerical Redu so-a
The optimization problem (P2) was solved numerically in the 01

Gaussia and slow-fading Rayleigh channels for different maxi- 0.00 5;6 ...ii- IO 25.0 0 .0
mum allowabl request rates 00. Numerical results from the two SPO ~to-w i~o od (d)
sumanesfribed i team fand6.Te detetio probability cur-ves a Fig. & Detection (aolid) and opuniala nanrandomn request (dashed)sumariedin ig. 5and& Me etctin pobbiltycuresprbabiltie wer= SNR far the slow-fading Rayleigh channel. False
for the two channels were obtained by constaining teM1 alanm probability AO - 0.001 and prior probability P0- 0.5.
mum allowable request probability at a designated level 80 and
numerically solving the optimizatio problem (M). On each
figure, the request probability envelope (bell-shaped curve) indi- consultation rafte is dictated by the degree of confidence of the
cates the maximum opsimal consultatio rate and is achieved by primary sensor on its initial findings which is a function of the
setting 00 - 1. It is interesting to note from Figs. 5 and 6 that SNR and the channel statistics. From Figs. 5 and 6. it is seen
the nonrandom consultation strategy does not always use the that the optimial maximum request probability saturates at dif-
manimum allowable consultation rate for the entire SNR range. ferent levels for the two channels. This difference in the behav-
Thiis seems to be counterinsutie since it can be argued that ior of the two channels is explained in (131.
mor often consultation can only impirove the team perfor- Another observed difference in the behavior of the two chan-
marc=. This might have been trit if the decision to consult were ntls is reflected on the variation of the maximum optimal
not associated with the degree of confidence of the primary consuiltatio rate with the prior PO for fixed SNR and false
sensor on its preliminary findings. However, in the nonrandomt alarm probablty, Fig. 7. The request probability P,, in (23)
strategy scenario that we consider here this is not the case. In depends on the probability masses associated with the indecision
our scenario the decision to considt as associated with the region under each hypothesis and on the prior Po. If the tnequal-
confidence that the primary sensor has on its data. Furthermore ity constraint Pt :s A can be satisfied as a strict inequality for

fsince the decisio of the consultinig sensor is taken to be final any prior PO, then the indecision probability masses (PF( 1) -
once consultation takes place the initial decision of the primary Pr(t-,)] and (PNj(tj) - Pjif(tt')J will remain constant irrespective
sensor only affects the threshold of the secondary sensior (18). of Po. This is definitely the cae when pS, - 1. Hence. for the
11Tus, the mriaximum consultation rate is niot necessarily always maxmumt optimal consultation the variation of PR with respect

*equal to the maximum allowable request rate, for the maximumt to PO is linar (Fig. 7). For the Rayleigh channel, the maximum
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7.Effect of prior probabiit PO on detectiont and optimal req~uest g . ~ .. ~ t cueeie dtectio
pRo~ (liie. AO-001 N 00d.CanLGstn() probalmlities for the Rayleo chimed at 10.0 til. Slope of optimal

Rayreques) rute cdumps up depauitiag an the speifleWdetection pirobabil.
sty.

optimal request rate is monotonicaily increasing With PO. while it
as monotonically decreasing for the Gaussian channel. For the
Gausaian channel, it was found that Pt decrease as P0 in-
craesn irrespective of 00 and of SNR. However, for the Rayleigh
channel, the variation of Av as Pe increases depends on Po and M4 -
on SNR. The reason is that the slope of the line that deterimnes
PI, in (23). that is IP,,(tt) - PFt,]- (P,4(t;) - PA#(tlj, does *
not maintain the same sug for all 00's and SNRs. From Fig 8. it 0.0%g
is seen that the slope is negative, implying a decreasing coasulta-
tion rate for Ptis 0.725 but positive, implying an increasing
dlope for PO > 0.725. 41.01,

From the analysis of the numerical results, it follows that 30.4 %
despite the exhibited differenices between the two channels, the V

otnlsltosposses the desired properties postulated by 10420 r
tedsgcrtrai111Analytical results supporting some of i

the above qualitative statements for channels that can be mod-
cled by absolutely continuous disriutions with repecty to the
Lebesgue measure under either hypothesis can be found in (121 -50 1.0 50
for the formulation of problem (P2) and other formulations.

F%5 9. Comparvison of seral, optimal nonrandom. and optimal and
D. CoMqwiWXu of Nuaaerca Rjmkts sladoPm ad m I ciat at optimial request rates for Galussan (G)

and Rayleig (R) chansels. AO - 0.001 add PO - 0.5.
In order to compere the advantages from nonrandom consul.

tation veusta random consultation, the minimum necessary re-
quest probability for achieving the same detection probability tion requirements, the (P2) optimization problem can be modi-
with oltimal nouisadom consltation as with optimal random Bled to amint for that cos 1121.
cogsufiation U computed and plotted in Flg.8 as function of the The nonandomt commutation chm is compared to optimal
prior probabiljity for the Raylig cuanne assuming team false and suboptimal consuiltaition schemes for the request rates equal
alarm proabltyf 0.001. For random consultatin, the request to the optimal onrandoml request rate. iLe., the rate that corne-
probability is independent of the prior P0. On the other hand. sponds to 190: I (Fig. 9). The optimal symmetric. nonrandom
the optimal request rate for noarandlom consultation increases consultation scheme for 09 - 1, Leý the serial combination S12.
linearly as PO increases for Po > 0.725, but remains substan- is also included in the figure. The following are observed: a) the
tinily below the required request rate in random consultation for optimal, nionsymmetric,. nonrandom consultation scheme: per-
the same Po (compare to FIg. U) Thus, optimal nonrandom fOrin very closely (iedetcally in the case of the Rayleigh chan-
consultation results in sublstantial reduction in communication ael) to the optimal, symausic, nonrandom consultation scheme.
requirements (consultation rafte) required to achieve a certain iLe, the serial combrination S12; b) the performance of the
team performanc level compared to random consmutation. No- optimal and suboptimal random consuiltation schemes is inferior
tice that an Fig 7. the detection probability for the Rayleig to the nonrandom consualtation at the optimal request rate; anc
channel is below 0.725, and thus thes request rafte decreases as 0) the suboptimal random consultation scheme performs worst
the prior probablty mcremese. in apeement with the results in than the optimal random consultation for the Gaussian channel
Fig 8& If a cost factor (price) is associated with the comniunica- but identically to it for the Rayleigh channel.

it A
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Random and nosirandoin comulitation schsemes ae examined (A-5)(1 P 2

and different mathematical formulations of the decision making t.0 P620 Pp,2 ) (
problem in thn presence of con$itation cos teas analyzed The RNJ'ERWCIS
problem of consulting sensons is cust in a general friutewotk (11 R. It. Teneiy said N. R. Sandal Jr-. "Detection with distinbuted
suggested for senor integration thai satisfies design criteria that Noes," MIX. TOrm Alwoqe. EIIcvwL Syn~. vol. AES-17. ppý
guarantee the benefits of data fussion (i11. IU analysi and the 501-SIC. July 1961.
numerical results indicate that the optimal solutions to the (21 S. C ~ A. Tbua *la L Viwsewan ayend .V BoIEEE h
different schemes introduced in this note satisfy the three data Aw MON L S ya. ~ vol. AES-23. no. S. Sept 1967.
fusion design criteria which we advocate to be essential for the [31 S. C. A. Thomapouloias. D. LDoupuah sia.ad L Zhang, "Optuima
design of any practical decision making system, namely mono- and suboptimal distributed deasmi h6iMflSPIE's 1988 Tech
tonicity with respect to fused information, inonotoicary with S~oiV. Opsi Ekecm@-Cpaci Sivum,. Orlando. FL Apr. 4-8. 1988.

respct o te cot asocate wit aqirig te inormtio. ~ (4) R. Snnivaan -Distrbuted radar detection tieory,- lEE Pf'oceed-respct o te cot asocatedwit aqirig th inormtion an Lq Pa F. vol. 133, no, 1. Mp 55-40. Feb. 1966.
'sbusomws with respect to a pnon uncertainty. Comparison be- (5) S. C. A. T1hoiopoulos. R. Viswanazbain. and D. IL Bougoulias.
tween the random and nonrandom consultation schemes demon- "Optimal distrbuted decilsio fision." LEEE Trans. Aerospace Dlec-
strates that nortrandom consultation considerably reduces the am. Sjai. vol. 25. no. S. pp. 761-764, Sept. 1969.
communication requirements for achieving a desired perfor- I6 It. Vivenanatbass. S. C. A. Thbomotpoulos. WAd R. Tumulun.Ot-

mal serial distriuted decsin timrn." IEEE Tram. .4erosptzce
mance level compared to the communication requirements for Maen Sy,~ va X2m4,no. July 1966.
achieving the same performance level with random consultation. (7) J. D. Paputsyamo and M. Albans. "A distributed hypothesis-tcs.-
Additional analytical and numerical results from different for- 6n teami detsion wfib commnications cost." in Piic . 23th Conf

mulaton o the roblm canbe fond in(121Decsin, Cow., Athena, Oweos Dec. 1966.
multios f te pobem anbe oun i (11.(8) 1 D. Papastavrous. "Disriutisd detection with selective comimuni-

caboes." Ph.D. dnessnabom. Dept. Elect Eng. M.I.T.. Cambridge.

To derive the ROC of the serial combination of Si and S2. (91 KL L Van Treess. Dmakm. Em..no. and Mbodumew Thewry. Panr
we consider a system of two sensors Si and S2 in which the L~ No ok Wb 7', 196L
decision u2 of sensor S2 is transmitted to sensor Si and is then Homes 1.V 9WPa a W u. aa Dkn.M nc
used together with the raw data Z, available wo Si to arrive at a 111) S. C. A. Thouopoulos, "Senssor integrastion and data ftision." I.
final decision ul. To that extent. we follow an analysis similar to Robouc S~m (Special linie). vol7., no. 3.1990.
(61. Denoting the distribution of r, as p(r,1H0) and p(rIHI). (121 S. C. A. 71iosoopouls sand N. N. Okallo. "Distributed detection

theliklioodraio t snsr S bcoms inth consulting sessio and comeuiiiaicato cost: atailysis and
the ikeihod rtioat snso SIbecmesnumerical tub.f" IPMS Lab. Dept Eleca Eng. SIll. Carbiondale.

L(r,,u:IMi) p(rlIHl)(Poz S(u2 - 1) + (I - PD2)8() IL Techt.Rep. TR-SU-.EE-I& 19K8 0G t) (131 -. "Dinstriutd detmecton nubl mineuting sensors and communi-
L(r,, u211f0) p(riIHO)[ P,2 8(&t2 - 1) +. (1 - PZ) 60u2)J coa ion" Dwasi Cow.' Spas Lab. Dep. Elect. Coniput. Eng..

(A)The Pernimylvamei State Univ. University Park. PA. Tech. Rep..(A. 1) Oct. 1990.

where

PD)2 - Pru - 11H1) and P,2z - Pul- I1H0) (A.2)

ane the detection and false alarm probabilities at 52. respec-
tively. u, - k implies that sensor S2 decides Hi, k - 0, 1, and
SWx is Kronecker's delta

Hence, if t is the threshold at sensor 51, the test at Si
reduces to

pFr1iHiP 0 2 1,
itt if u,.'1

p(r1 IHO)P,2 ff.

p(r1IHt)(1 - P0 2) H,
ý I if u2 - 0. (A.3)p(r1 IH0 )(1 - P, 2 ) H.

Alternatively

API) II Iiu- A4
MeH,0 itU - 0 A4

where
p(r1 IH1 )
p(rzIH0 )
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Number of Liv (a Dumber
Number ot Mofaoee Number f all Percentage Number of o( Monowe Total Number of Peneniase S
Sensorn N Functions Pbmbe 22# Functions Reduction Seamn N Functions -2) Functaons RN Reduction

1 3 4 25 1 1 0.00
2 6 16 6Z5 2 4 2 50.00
3 W 256 92.19 3 16 9 5000
4 168 65,536 99.74 4 161 114 31.13
S 7.581 4.2949673 it 1o 9999M2 S 7,579 6.894 903
6 7.82&354 1.8446744 x 1019 100 6 7,88.3s2 7.786,338 0.54

probability of detection at the fusion for the given
false alarm probability. Let the best randomized REFERENCES

N-P test at the fusion center be t(ut ... u,) Z Ao
w.p. p. resulting in false alarm probability PF0, and [1] Conte. E., D'Addio. E. Farina, A.. and Longo. M. (1983)

..... .....Upv) > 
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The0 Pennsyvani Stat UniVeria
Univereity partL PA 16602

Tel. (614) 865 - 3744: a-nmall actpaueelbitnet

Distributed Decision (Evidenc Fusion (DO(E)F exhibits mm intrmeaung characteristics which are not present
in centi'allaed. or raw data. fuimon. The itoeresting charactuersties relate to the semantic Informaton that the
decisions (in ane broader saws of the arm) convey which (sernhnte infrmationl ts not presna. at least explicitly. when
raw data is hised. Diffren theories and results related to DDf El? ham appeared in the literature. Each theory taktes a
different stand on the definition of how to measure evidence or comsbine decisions. The objective of this paper is to
invesutigo the nature of DDIEIF and establish a comparative buml between the two mowt promnment theories in DD(EIF.
namely the Bayeston and Dempster Shafer tianries. lb that extenL the stilmilartis and diffrences between the two
theories that result from the semantic differences in the format of the fused information are invesiapted. A performance
comparison, between the two theories is attempted. A Genemlised Vvidlence processin lGEP) theory that extends the
Bayesian, approach into fussy decision making is used to compare the performance ofa Bayesian soft decso rmakcingsystem
with that of a hard decision making Bayesian system. The similarities and diffrences between the GEP combining rule and
the Dempsrers combining rule are discussed and a consistenicy comparison between the two rules is performed.

1. aborageibd Doseisle Fesies"A sad Disina Frseem"s
Distributed Decisin (Evidence) Fusion (or DOWE) in the sequel) exhibits some Intemung characteristics which

are not present in contimllsad. or raw data. futsion. The interesting chaacerNIstics relate to the semantic information
that the decisions (in the broader sense of the term) convey which is not present, at Ieao explicitly, when raw data is
fused. Different theories and results related to Distributed Decision Fusion (ODD) how appeared in the literature the
last decade MTS& 11I. Ssdi '86. ChVa '866. Srin '66. 'NB'S?. VP7 'U8. TVB '68. Demp 89. SWo 76. Thomn '901. Each theory
Wame a different stand on the definition on how to mesure evidence or combine decisions. 711w objective, of this paper Is
to invesutigt the nature of DDWER. present some of the dominating theories on DDF and DII. luhlgt similarities and
differences among them that result from the semantic format of the (used tinformatIon and: exploit natural topological
equivalences between DOT and structures that exhibit learning abilitius. such ws neural networks.

To avoid concealing some of the Issues under structural coMPleAttles and keep the discussion focused and a
clear as possible we consider the simplest, yet fundaniental. DOT topolog and problem. We assume a parallel topology in
which each sensor receives data from a comnon volume. Fig. 1. Furtherunore we assume that the sensors are perfectly
aligned, so the problem of mismoatch does not arise lThOk '681. In this parallel iopolo. we assume the simplest DDF
probksm with each sensofs data staistlecoWl Independent from the other sensrs, Each senso" performs a localI opertion
on its data and transmits the outcome to the fission. 1%e fuioon collecnts all the local information from the sensors and
produces the global inkrtenoe. Several optimality results on Bayesian DOT have been obtained the recent years fIvE'891.
lChVa '86. IIVD'671. (VAT '89. flwma'901. Mal W0. Under the aseuptions stated sbove. the optimal Bayesian DDF Is
shown in Ftg& 2. in this paper we consider multi-level logic decision rules, In which the number of penrmissible loca

deison exceeds the number of tested hypotheses. Decision rules Wo binary. as well as multiple hypotheses. testing
problerms are considered.

in DDF. the outcome of the global processing (futsion) depends on the outcome of the local data processing
(sensor level) and the semantic format of the futsed information, In the Bayesanm context, the outcome of the local
processing can be either hardl decisions in a single-level logic IThom '901. or soft decisions in a moulti-level, logic rMomn
'901. or it can he the outcome of a simple quanittation of the data. if no semantic attrbutes are attached to the outmc n
of the local processing ILWG '901. In the context of the Dempstez'-Shakt's (D-S1 theory, the outcome of the local
processing in a set of probabilities that relate to the degree of support for each proposition in the frame of discerrnment
by the the dama of each local processor Ioemp '66. SMaf761. Thus, the local processing outcome of a Bayesian DOF is a
quantized scalar number, whereas the outcome of the D-S local processor is a real-valued vector that corresponds to an
entire probability distribution.

In addition to semantic differences In the output of fte local processore. there are also substantial
differences in the communication requirements for transmittin the local information to the fusion, even in the presence

1. This research is sponsored in part by 5010/1ST and mainaged by the Office of Naval Research under Contract
NOOO 14-86-k-OS 15.
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of muilti-lewi kWgic the communicatin requairementsZ for transmnitting one out of. say. M integers is substantially lower
than trtuimsitltin an M-dlawisional zea-valued vector. Hence. the communication requirements for the Bayesian DDF are
substantially lowier than the requiremetis ofD-S DEF for the same numberof data. Thus. a rnowngiful comparison between
Bayesian and D-3 DDFr should either flx the available commfunicationi bandwidth lobe the limebfr both approaches. ortix
the fusion objectives to be commo~n and study the commianicatin overhead. In this Pawe vie attempt a comparison of the D-
5 ODD with the Bayesan DDF assuming identical coinarunication requirements.

Several oparnalhty results on Bayesian DDF hafe been obtained the recent years flVU '891. (ChVa'861. iZYB'871.
(VAT '891. rrhon '901. Mi~ *901. in rrmorn '86 and Thorn '901 a Generallned Evidence processing IGEP) theory was
itrwoduiced. The theory generalies the Bayesian DOF into a framework where soft decision making Is allowed. The GEP
theory is briefly sulmgnariaed in the next section. For a complete description of the GEP theory. see rlhom'90 and Thorn
'901.

2. Genealssafa Rvides"fee reasalag Un~say
The pvoting ides behind GE? theory is the separation of hypotheses from decisions. Once this separation LS

understood. the Bayesian (or N-P) DDF theory can be extended to a frame of discernment W--ilar tn hat of D-S theory. In
the context of GE? theory. the choice of different decisions can be thought off as diferent quanutixaon levels of the
dama For notational simplicity. the GEP theory to first presented for binary hypothesis decision fusion. Generalization
to multiple hypotheses decision fusion follows at the end of the section. Let K . KI be the two hypotheses under teat-
The probability spies is partitioned into twon mogons according to the events 6. H. I and (a - H. I with associated
probabilitiesaP Ia 0and PO epciey hr ,*PO a . Lt%.d,. and d2 := %vI be aframe of discerninent

used by a decision maker to partition the probability space according to the gathered evidence, where the three decisions
correspond to the propoattions 'HO tre. Hl~ true. and -%or HN true.- respectively. The decision j -av where

"v" stands for 'or.' Indicates, the inability of the decision maker to come up with conclusive evidence on the true nature
of the hypothesis.

In the classical probabilistic (Dayesian) framework, the probability associated with d., Ist equal to

.r v -P(O+H IluaPr(N + PrIH, I aI (2.1)

since H 0and H Iconstitute a disjoint coverage of the probability space over which the evidence processing problem ts

defineid. As it was mentoe cortier, the apparent weakness of lix Bayesian theory to incorporate non-mutually exclusive.
ILe. redundant. propositions gav rise to the D-3 themr which is particularly elikient in dealing with fuzzy
propositions. However. bydiaaaaociatingdeeisins fromnhypothsees a unifed farmework is create which can accommodate
both Bayesian and 0-5 DOFs.

In the context of CEP theory. the basic probability assignaunet (bps) is accomplished either by minimizing a
generalized Bayesian risk rrhom'891. or through any method that is applicable to D-S theory rrhom'901. If the objective
at the fusion is to minintiv a generahld Bayesian risk, evidence combining in the GEP theory is done using likelihood
ratio functions and pairwise multiplication of probabilities sccording to the way described in Table I and Eq. (2.2). The
GEP combining rule involves pairuise multiplication of probability masses according to Table I as in D-S theory. However.
In CPtheory. the masses ame associated via thresholds in an optimal way so that a certain risk is minimized, or so that
the probability of detection is masximised for fixed false alarm and indecision probabilities (generalized Neyman-Pearsn
test). whereas in D-S theory the probability masses (beliefs) am combined according to intersection of events, resulting
in evidence conflict (Eq. 3.8). For a numerical study of the effect of the decision coat on the selaction of the bpa and
the performanes of the GE? DDF rule sGae K~ 901.

Table I MP Wld..am Ceoblaiag ftk (2 higWCioneiii 3 desionalms

S2

S1S

ThIrbblte n Tablen (d co di.oe )n each hyohei (d. 1 (0.1.Tu.ecnj.I*.2.iTal

I is a conditional probability for I - 0. 1. Hence. the initial probability combining takes place among conditional
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probabilities only. for I a-0. 1. each product term in Table 1. Is a probability mass on the LAT cotordtuha a&Ma with

abaciasa ns d) I ar(d) / dforemy d - %. d1 .d Evidence combining under esch hypothesis Is done from Table I by summang

the probabilaiiis krm Table 1 whome abscissae fall in specific Intervls sapfeild either by an opamustaon criterion,
or a certain demaned perfoiarimne Hence, for d - do. dl. 4 2 . &,, . evidence combining under each hypothesis .-

o. I. isadone seconding to the dwshamba tub 4

m'1(d. (m2 (d) - decisiond If 0 (2.2)
M (dk) m2 (d1

where F,~ ith clnrgothtfvrdeiin Teegions Fway be determined so that a performance criterion

is optinmed, at the fusion (and possibly at the *'nsors). For a single binary hypothesis. the decision regions at the
fusion wen determined Ly simple thresholds, in which case the decision rule (2.23) simplifies to

m'. (,Y n2 (dm) - mcldon mif(d):- (2.3)

for all It. m. and j. where tý are the thresholds of the LRrs associated with the different decision that mininmiz some

risk function. if multiple hyptheses (more than tw-o) awe tested, the combining rule io extended to combine the belief
functions of the uxdivitual sources at the fusion and generate the new conditional belie function under each hypothesis.
The association of the new beiffunction at the fusion with the set of admissible decisions must he done by using the
multiple-hypotheses LRr NTre 661. or another teat that optimizes, some patimvnses measure. It must again be underlined
that the probabilities in the OEP combining rule need not be defined through flayesawn reasoning, but way very well
correspond to baele functions resultin from the D-3 approach.

In the mtultiplea hypotheses cae. the conditional belief function in CEP becomes a multi-variable function of the

Uts (A.k(d) :a n . kt a 1. 2. rn.. -1l where J is the number of sensors in the fusion system.Ith
J 0 1 dP~ddj H)

decision of the 1-th sensor, and m the number of tested hypotheses. IThe evidence fronm the dLr-vmt sensors is combined *
by foruing the joint probabiiy, distribution of the Mes under each hypothesis. Le. by generating dPtA. . A.......I

Hl,). k.- 1. 2. ... J. For two sensors with independent decisions conditioned on each hypothesis, the conditional evidence

combining rule of GEP for three hypothesis and soft decisions (fuzzy logic), can be Implemented Using Table 11.
Ta"l U x3en4saes an"Min awl for usultiple hypetbeseme fAs a" tbse

d0%, Kd -d.). A. (d, .d4) 1 H k'

- dPtA.(d,..4) 1H kW" (4 .d..)%~)

2

ji-

(0.03 A. (0.0) A. (0.0i dPIA. (0.0) 1HI~k~piA(O.O11 HO

(0.21) A. (0.2) A. (0.2) dPIA. (0. 1) 1Hk WdA (0.21) 1Hk)

(0. O1I A. (0.2v) A. (0.2)~ dIP(A. (0.2)1IH kWP( (0.2v) 1H.k)

(0. OV21) A,(.0Mv2 A.& (0.0V U dPf(i. (0.0v2 1)I H tkdfA (O.0v21)1 k

(Ov 1. 0) A, (OVI.0.) A. (OVI.0.) dP(.i. (Ovl.0) I HkP(A. (OvI.O)Ik)
(OvI1. 1) A. (v 1. 1) A. (OV 1. 1) dP(.A. (OVI.l0i1H kW"iA (OvIl")IHk)
(Oyl. 2) A, (Ovl.2) A. (Ovl.2) dP(A. (0vI.2) IH It)dPiA. (OvI1.2)IN~)

IOvi. OVI) N. tvI.OvI) A. tOVl.frVl) dPtA. 1(1OvL0vI~i.WtA (0v1.Ovl)l1Ny

(Oy!I. 0v2) A. (Ovl.0v2) A. (Ow I.Ov2) dP(A. (Ovl.Ov2)IH k )dPV% (OvI.0V2)I 1Hk)

(Mv. 1) A, (042.1) A. (0VZ 1) dP(A. (0v2. 1)1lHkW(&iA (Ov.lINk)

..etc

SPIE Vol 7383 Sensor Fusion /it 3-0 Perceorion and Rec,,neuvon 7990. 4:5



Once all the entries in 1lhbk U1 am entered. the evidence is combined by adding the probabiliucs from the
fourth column togther whe the corresponding abselasea. Le. the pairs (A.. (d. -d.). % Id, Ad )) in the second and third
coluvmn an idendcal. Once the evidence fromn all sensors Is combined using tables similar to Table 11. decisions ame
asscisated with the combirisd evidence using rule (2.23) so that a desired performance criterion is opurmized. A

Thus. evidience combwnin at the (basln is done conditioned on each hypothesis separately. The evidence is then
asociated with the admissible decisions unconditionally using a LRT or a test that optimss some performance measure.

Notice that the set of decisions need not be the Same as the act of hypotheses. Thus. evidence combining said decision
ama"n we mdmstsed as separate eemseres in the frmemork of the Gimerwased aDyloseae Comblinig Theory

The generalteation of the Bayesian (arid N-Pl theoiy, by the CEP theory to straightforward. An interpretation is
probably required to esatblish the correspondence between GEP and D-S theories. If the probabilities Ptj - i II H

1. 2. 3. am considered as (conditional) bps's (basic probability wiassgnment~s (Shaf GD In the D-S theory for the k-th
sensor. kt - 1. 2. .. N. unider hypothesis )~. j - 0. 1. the evidence from the different sensors at the fusion is combined

using the conditional distribution of the LA under the dif~enrnt. hypothesis according to Table I or 11. A new,
(conditional) belief fuinction is generated using the decision threshold& at the fusion. Tie (hard) decisions at the
sensors awe used to *imply produce a hard decision at the fusion, if needed. according to some optirnality cnitenia. in
that respec. the GM theory met only defines arid processes the evidence according to an a-pnon set of opurnaliry
criteria, but also provides, if needed, for optimisd hard decisions both at the local (sensor) as weUl as global (fusion)
level, a capability which is not built-in the D-S theory (see Section 31.

The decision boundaries In GEP theory determine how evidence Is associated with propositions at the fusion and
reflect the choice of the cost~s w,. To demonstrate the effect that the semanitic content of the local decisions has on

the global decision (fusion). several experiments were conducted in Gaussain and slow-fading Rayleigh channels. The
following statistical model were assumed for the two channels.

dimselmi Obser'mitin nd taeach sensor~ r- G(0. 1):HK..and r -G(s. 1): H., .where G(a. ) designates an
amean and variance A Gaussia distribution. If P. is the operating fale alarm probability, the associated threshold

:0 (Pj. where I -4 )eIs the cumultve distriution function (cdl) of the standard rormal. andg is its

inverse.

where X. is the threshold used, and e the SNR at the sensor. In the single-level local logic Bayesian DDF with hard
decisions at the sensors and fusion. the probabilities at the sensors were generated assumting fixed false alarm
probabilities at the sensors equal to 0.05. For the multi-level local logic DOF. the ambiguous (soft or fhu~uyi
decisions were generated by considering a ±20% uncertainty region about the thresholds that determine the decision
boundaries in the Bayesian case. The numerical results that an presented refer to the binary hypothesis tesaung from
which the set of "soft! decisions consists of Id. - K. d. cl aH, . d. w H. Mi, 1. Additional results for ternary hypothesis
testing and arbitrary probability asignmsents can be found in (Calu'901.

In a set of experiments. the performance of Bayesian DDF (i.e. CEPI with soft decisions at the local level and
hard decisions at the fusion was comparied to Bayesian DOF with hard decisions both locally and at the fusion. Using the
t20% uncertainty region- described above to generate the soft decisionHI, ortH.". the LandOf Confideere (W=. which
Is equivaent to the (unconditional) probability of correct decision, was used for comparison. The LAX curves in Fig. 3
indicate that CEP outperform Bayesian DDF with hard local decisions in all cases. The curves were obtained by assuming a
fixed false, alarm probability 0.05 at the sensors, and 0.005 at the fusion.05. GEP outperforms hard-decision Bayesian OFF
in both binary and ternary hypothesis testing, in both Gaussian and slow-fading Rayleigh channels and for any number ofS
sensors. This does not Ir as a surprise if the decision set of GEP is thought of as the result of mulu-Icvel
quantizattion of the data and the qusnUcLuon is done according to a semantically intuitive fashion.

L Disgtrlue Doclaina Fusion usding Deimpster-hmimW'e Theory
The difference between the Bayesian and D-S theory lies on the type of Information that each sensor transmiuts to

the fu~sion after processing the data locally. As it will become clear in the sequel. if the propositions In the D-S
theory ane identified with decisions in she GEP (Generalized Bayesian) theory. then there ame no semantic differences in
the frame ofdiscernment between the two theories. The difference lies on that the probability assignment in CEP sall
satisfies the Bayesian rule. wheres the evidence assignment does not. Assuming that the number of hypotheses that arm
tested is fixed and the number of decisions (or frame of discernment in the D-S termiriology) is fixed, the output of the
local data processing ts a set of probabiliies regarding the likelhood that the data have been generated by one of the
particular hypotheses or subst of hypotheses according to the frame of discernment. To that extend, the use of the term
decisions in the D-3 theory does net precisely reflect the output of the local processing. It is mrore appropniatc to
characterie the outcome of the local processing as evidence about a chosen set of proposition rather than decision
regarding a specific hypothesis or set of hypotheses. Thus. even if the frame of discernment Is kept comnmron between

-: S'3 Se-sor cusion dl ;-0 Per'e.;tion,#na Pec:o.r' ,,o, ' 990;
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Baesi~an WAn D-3 approaches (by utilixng multi-evel Bayesian lkgc). the mapping of the daia in the output of the local
processor is completely different. the Dayesian processor mo"aps me dams to a particular. single decision (integer-valued
sealar). whereas the D-3 Procesor maps the same data tos seat of probabilities I ultiditogsional rew.vajuod vector,
aaaociastdwhalldecisions in the fAnsofdiscernment. Hence. the comeuruncatiOa requirements between Bayessan and D.-s
Processors aWrid fson are diffent Assuming a frame of disownmeunt consisting of k propoaltns. the communication
requiremntns for the Bayesian case is 21og& (One bandwidth requtred to ownsmit one of It bits). whereas Aar One DS
processor It analog outputs must be transmritted to the fusion. Thus. unless the comtmunication requirements for the ma
approaches ame made commocn. no direct comparison in the performance of the two sbcemft Is meaningful. Since sucha
performance Is beyond the objectives of this paper. we limit the discussion in the structure of the D-S DDF.

In D-3 theory. a set of mutually exclusive and exhaustive propositions uI-1....... is assumed toward which

evidence is being offered. TO each Proposition. their ditsJunctions. and neganon. a nonnegative number between scm and
one (or probability inass) is assigned. If A is an Atomic proposition, a disjunction of propositions, or a negation cf a
proposition. then a probability mass. ma", is assigned to A. The quantity mIWA is a measure of the belief in proposition
A based on the evidence offered. If U designates the frame of discernment, then

I mIWi 1 (3.1)
AeU

with the remtaining I - I mn (A) mass attribute to Ignorance. Assumfing that Ignorance constitutes a separate Proposition
AMU

and extnding the set u to Include thils proposition. expresson (3. 1) holds as an equslity. According to D-S theory. a
support funtIon is defined for single propositions as

apt(u 1 0 M(ui) (3.2)

and for more complex propositions ase
spilWja I aMIB) (3.3)

BCA
where "C indicates subset. TheM plausibility function is defined as

plsNu1) 1 - ptcu1) (3.4)

where u, Indicates the negation of proposition u1 . Alternatively, the plausibility function hor a proposition u, is

obtained by summining the masses of all the disjunctions that contain u. I*including Itself. Le.

plOu 1)- Z amWA (3.5)

Hence, the support function is indicative of how much evidence is offered in support of a given proposition by
all the propositions that relate to it. Furthermore, the plausibility function Is Indicative of how. likely It is for a
given proposition to have geticauted the data,

Evidence fromn difiezent. said tridepevident sources dlefined over the same frame of discenmnent. is fused according
to Dempaters comibining rule lDepin 681 0

1 M (A, m(B)

mlu 1m,*m 2 AIB, uI I )m (3.6)

AkBa-s

where m , and am2 designate the support (bellel functions from the two different sources of evidence dlefined over the same

frame of discenment U, Is the proposition toward which evidence is soughLn and "s is the empty set 15haf '76).

IRenormalization of the combined evidence In rule (3.6) is required in reject evidence that corresponds to conilicting
pmWpAitions. The D-S combinding rule can be implemented insa tabular fashion that resembles that ofOCEP theory (Thorn 89.
'901. I'd illustrate the Mechanical similarities that exist between the Demcparer's combining rule and the GEP DDF.
considera simple binary hypothesis testing problem., If the frane of discerniment is defined as (u. aHK. u, aHK . u. - H.
or H, ). with u. indicating the inability to associate evidence from the data with a definite hypothesis. the Dempster's
combining rule for two sensors can be Implemented using Table Ill. In Table I11. k designates, evidence associated with
conflicting propositions which is used as normalizng factor In (3.6 ). The combined evidence is calculated by sumining
all the product terms from Table III that result in the same intersection proposition. and normoalizing the result. In
multiple-source evidence combining, rule (3.6) Is repeated seqluenclally until the evidence firom all sources is exhausted.
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7he difference betwen Crie D-4 anid Bayesian theorny is that the probability assigrnments for the ,iroposations in
the frame of disaenment of the D-3 theaory do not saat* the funidamsental aidam of (Bayesan) probability, namiely

P(A.B) - PIM + PON)- POAN (3.7)
in the D-S context. the proposition A+B is viewed as a separate entity in the frame of discernment and can be assignmed an
arbitrsry probability nasa. Sail all the probability assignments in the D-S theory~ must add up to one or somec positive
quantity less than one, with the remaining probability mass to add dp to one attributed to total ignorance IShaf'761. A
correspondence between the propositions as defined in the 0-4 thosy and the decisions an defined in the multi-level logic
Bayesian theory can be established if the decisions of the mulUi-level logic Bayesian framework sam identified with the
propositions in the D-3 frame of dISCernent. Once this correspondence ts established the fusion performance under the
two approaches can be studied under commown communication conistralns. Bydisaaaociatlngdecisloris from the hypotheses*
under test, the Generalisd Evidence Processing (GEPI provlides a semantically coinwion framework within which the N-P and
0-S DOF approaches con be compared under cmansin communication conatraints.

Due to the *.aw=rec in the way evidence is geera ted in Bayesaln (N-PI andi D-S theciy. an unconditional
performance comparlison between the too theories is not. in general. feasible. Slince in a lot of practical applications
the performance of a decision making system is determined by MoItng the fols alairm probability and maxmizing the
detection probability at the fusion, it is meaningful to compare: the Bayesian and D-S approach based on an N-P criterion.
In order to make the comparison possible. we assume that the basic probability assignment of the 0-S DOF at the local
level is determined using the likelihood function. i.e. we assume that

m(a I r) - P(alIr) (3.8)
where a designates a proposition towaids which evidence is provided, and r the obsevations. Even when the bpa is
resolved at the local level. the decision rule at the fusion after the local evidence is combined rmasins undeternmined.
In order to keep the decision rule in a 0-S contex while maintaining a basis for compaiuson with the Bayesian DDF. the
decision rule that will be used for the D-S DDF will assign the data to the proposition that has the highest support
among all propositions in the frame of discernment that correspond to definite hypotheses. ILe.

dlxi :ud t(r'): uiam d~ and d,=u, I over all sinle hypothesis propositions (3.9)

With the above assumptions. we prowe the following theoremn.
flaseMM I Assume that the objective of the fusion is to maximize the detection probability after fusion for

Axed false alam probaibility. Let the observations of the local sensors be indepe;ndent from each other coinditioned on
each hypothesis. Let the bpa for the D-4 DDF be determined by the liklihod function (3.81 at the local level, If the
fusion rule is the Mie (3.91 abome them-
(a) if the local frame of discernment coincides with the hypotheses under test. i.e. no unions of hypotheses are
used as basic propositions. the performance of the 0-S DDF is the samne as the centralized N-P (Bayesian) fusion.
(b) if comipound-hypothese propositions ame allowed in the local bps. then the performance of the 0-S DDF is always
inferior to the centralised N-P fuinon and the distributed N-P fusion for the same communication overhead.

Zmj We prmv the theorem for the cawe of two sensors and binary hypotheses testing. A generalization of the
proof. although notationally invokved, does not present wny conceptual difficulties and as such is omnitted.

Part (a According to the asumptions of the thoorem. the bpa is
miH):- Pr(H, )-((r IH) )I/pr I-0.1(3 10)

and so the 0-S requirement
nOH. + mfH,)a- 1 (3,111

is satisfied. Using the Dempster's combining rule () for two sensors, we obtain
supOL). (rd (M, )1d 0(11)1 / I I-in' (H. 3m' (KI) -in (H. )m' (H,) 1 (3 121
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I,

wher the division in the result of mmmnalmaon due to the existence of cwnictin evidence after f5on. and
the supelscrlp•s dentU* the mmon A simUar expression is obtained br the H. hypotdeaw if the Indexc in (are
switched. The proposd dsciion rue (3.91 tionala•cs to

supOL isup(.) 3. t (3.13)
A.

were t ia some threshold ts be determined. Taking into account that for this particular cae the D-S rule yields
sup(H•) mO11) (3.14)

ai using expression (3.3). the 0-4 decision rule ves after some elenmntasy a•pbra
H,

(p(r, IH, )p(r, I1/ (p(r. I H, )p(r, IH, )3 t (3.15a)

or
H,

(p(rn IH, )p(rI, 13 I (p(r, I11. )p(r. IiH. 3I t (3. 15b)

or
H,

(p(r, IH,)/p(r, i1,)l Ip(r. IH,)/p(r, 11)).3 t (3. 15c)
or .

H,

(p(r, I1H, )p(r, IHK)- t p(r, I. Kp(r, I1K] 0 (3.15d)

which Is pre--tely the cenrabled Bayesian N-P test. Thus. the performance of the D-S D? In this case is Identical to
the optimal centralind Bayesian DDF for the sam false alarm probaity at the fuson.

Part (hI In the binary hypotheses testing cme the only compound proposition in the frame of discernment is (H. *
or H, I. 1f we assume. without loas of generaity, that the bpa for the three propositions Is done by subtracting an equal
amount of probability from the two propositions that correspond to the definite hypotheses and asaceating it with the
compound proposition, the followi bpa results

mt(.) - Pr(H. 1r3)- c(r,)/2

m101, ) - Pr(I, Ir- .s(it/2 (3.16)
m t,(H or K4 ) - e(r! :- g,

where the probability masc (ir) can be data dependent. Using the Dempater's combnIng rule to fuse the evidence and
suppressing the explicit dependence of c Ion the data for notational simplicity. we obtain the following expressions for

the support function regarding the two hypotheses.
sup(H.K) - (H.)m. 0H.) + 1/2(c. m, (M.) + , m, (.)] - 3e./4 I A 1 1 -conflcting evldence I (3.17a)

and
sup(H, -m, (H, )m, (H,) + 1/2(c. m. (H. c, m. (H, H - 3e, c,/4 /(1 - confliting evidence I (3.17")

from which the maumed decision rule
K.

sup(H /sup(1.) > t (3.181

yields 0
(p(r, I H, )p(r. 1K.) - tp(r, I1H. )p(r, I91 K1

H,
S1/2(({, p(r, IH, )+e, p(r, IH,3) - tip(r, Ii .)Ip(r, IH.3)]) 3e, c,/411-tl (3.19)

By comprming the decision rule (3.19) with the optimal N-P test rule (3. 15d). it in seen that the first term in
brackets In the left side of (3.19) is identical to the term in the left side of (3.15d). Since the decision rule (3.1Sd)
is 9K optiumal decision rule in the N-P sense. rule (3.19) would achieve optimal performance (( md ongy i the rest of
the terns in (3.191 could be mode identically equal to zero for a fixed threshold t. However. even with data dependent
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bps assipaseft 91Cr). this is not posse" in generJ. Thus, the perfourmance of the D-S DOF is inferior to the optumal

centralised N-P himashL purihermcinr. sime thm performance of the distributefd N-P decision &Wson can be wharbtwly
closeto the optimal centrubled am rMD'67. Thorn 901 byt simply hicluding some additoonail quality lnfirmation bits
along with the decisions or by Imenifg the number of quain~tlan levels the perfnhrnnmc of the N-P DOP is always
superior to the perlemannor of the D-3 DDW for a leasser amount of communicatin requimemais. Notice that in the D-S
either the data Its&l has to be usnomitted humi the sensors to the husion (Which is the most efficient. way). or the bopas
must be transmitted thus malting the communication requirements proportional to the numberof propositions, in the frame of
dlscermnernt. IClearty. a quauiaced version of the data or bps& can be arunmluted resulting in reduction of coaninuncation
requirmernts and performanc as well. I

The above argaumnts extend esallyo mnultiple sensor case. The generl mvu hj p-stbaes case can be handled in
a simila way as the two hypothesis case. only the expressions because mare comrplicaed. a

To compare the consistency of GEP and D-3 evidence combining ruls t2.2. 2.3 and (3.6) respectively, the
following experimient urn conducted. Numerical results hwav been obtalined for binary and ternary hypothesis testing. arnd
for distribution based as wall as arbitrary bps:s. However, due to limited space. mosults ftm the binay hypothesis
testing will be presented only. Por additional results. the readL- tmissrfm to IGalu 090 and Ga 1901. The binary
hypothesis testing results will he presented first. For GEP. conditional probabilities at the fuinon center were obtained
in the amm maumnr as in previously discussed simulations live conditional proabiblitires at the sensor, from the GEP
simumlation. wer used as the original probability sassigmnients at the sensor hor the D-s thmory simulation. Conditional
probability masses were caslculated at the fusion using Dempster's combining rule. The conditional probabiliftes from GEP
and the conditional probabilty masses trom D-S theory were then used to calculate conditional plausibility according to
(3.5). 'fin results were obteined for a false alamn probability of .05 at the swumr and .006 at fusion.

Figures 4 and 5 display results for Gaussian and Rayleigh distributed signals respectively. Both graphs show
the plausibility conditioned on hypothesis K for five and ten sensors To compare the ano combining rules for

consistency. we defirm the croesover point as the SNR level above which the plausibility hor the oorrect hypothesis. li.

becomes greiter than that for the Incorrect hypo~theasis K . Obseve that for both the live and ten sensor cases the

crossover point occurs at a lower SiR for GEP than forD-3 theory. So CEP works correctly for a widler rnuW of SNR than
does D-S theory. Also notce: the behavior as the number 01 sensors Increases bom amv to ten. For GEP the ctossoiver
point moves to lower StiR while for D-3 theory it does not move at alL This indicates that we cam Improve the performance
of GEP by lnaeasn the number 01 sensors, which is a very desirable feature. 'The performaince of D-S theory. on the S
other hand does not improve when the number of sensors increases.

FIgures 6. 7 show unconditional plausibility plots for the Gaussian and Rayleigh cases. More specifically they
show the unconditional plausibility for the correct and incorrect hypotheses. Once aspin the results ame shown for both
five and ten sensors. We m that for all cases the plaustbility hr the correct hypothesis is higher at lower SNR hor
GEP than that hor D-S theory. The separation between plausibility hor correct and incorrect hypotheses is much cleare
for GEP. In fact at very low StiR D-S theory fals to separate the plausibility hor the ecomet hypothesis from that of
the incorrct.

The too major evidence processing theories, namely Bayesian and Dempster-Shafers. are presented as applied to
the problem of'Distributed Declimio or Evidence Fusion. Some 01dme fundamentel results In Bayesian and Ncyman-Peorson
DOF are presented. it is shown that a Seneralfrtion of the Bayesian DDF using multi-levl logic at the local processor
cam provide a fraumework thastallows comparisonof the performance 01dme Bayesian and D-S DDF9 under certain conditions.
To that extend. a theorem is developed that shows that if thm objective is to maximiz the detection probability at the
fusion for flind Walse alarm probability, the Bayesian DOD outperforms the D-S DDW when multi-level logic is used locally.
iLe. at the sensors.
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fteoae' C. A. Themopeulos a nd Laze MiJU..

Information Processing and Intelligent Systems (Z$ZS) Laboratory
Department of Electrical Engineering

Southern Illinois University
Carbondale, IL 62901

Abstract - The problem of estimating the position of and tracking an object
undergoing 3-D translational and rotational motion using passive and active
sensors is considered. The passive sensor used in this study is a stereo
camera, whereas the active is a range radar. Three different estimation
approaches are considered. The first involves estimation of the object
position by direct registration of stereo images. In the second approach, the
Extended Kalman Filter is used for estimation with measurements the stereo
images. In the third approach, an integral filter based on stereo images and
range radar measurements is used for tracking. The three different approaches
are compared via simulation in the tracking of an object undergoing a 3-D
motion with random translational and angular accelaration.

I. ZNTI.OUCTIOU
Object positionning and tracking using data from passive sensors, such as

cameras, infrared (ZR) sensors, etc, is a common problem in robotics,
automated manifacturing, space navigation, and surveillance. However, in
order to be able to track an object undergoing 3-D motion using camera images
one must recover depth, a missing dimension from a 2-D image. Hence, in order 0
to retrieve the position of an object in the 3-0 space a means to recover
depth is necessary. In this study we assume that stereo vision (21 is used at
first to enable the recovery of the depth from a sequence of *stereo" images.
A problem associated with the use of stereo images is the matching of pixels
from right and left images with the correct points on the object. In order
to measure the depth of a point on a 3-D object, a point on the right image
must be matched with a point on the left image screen. A matching algorithm
which is a modification to the algorithm introduced in (51 was used for
registration. Using the stereo camera images, the position and the velocity of
an object were estimated using two different methods; first, by direct
registration of the stereo images; and second, using an Extended Kalman
Filter. Earlier work on the use of the Kalman Filter for object tracking
includes that [4]. However, in t41, a single camera was used to estimate the
position of an object undergoing pure translational motion with depth assumed
to be constant and known.

The noise associated with the observations on the image screens has to be
filtered out in order to achieve accurate estimates of the position and the
velocity of the object. The transformation equations from 3-D to 2-D

12 Research sponsored by SD1O/IST and manaqed by OmR, Contract N00014-14k-0515
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introduce nonlinearities in the observation model and thus the Extended 0
Kalaman Filter (EMK) that allows for nonlinearities in the estimation model
must be used. In order to improve the accuracy of the position estimates,
the optic flow (31 was initially used along with the position on the
image screen as additional measurement. The use of the optic flow, however,
did not seem to improve the performance of the estimation. Consequently, we
decided to omit the optic flow from out analysis. Instead, we decided to
use an additional Active sensor to improve the accuracy of the tracker.
Thus, a range radar was used to estimate the object depth separately. The
depth estimate was combined with the stereo camera images using an EKF to
est~imate the object position and velocity in the other directions.

2. TS'ZMlhIAZ SUM CU DZIRM=CT 3GWXZT3XZC OF BTMIWO MUMS
2.1 The Matching Algorithm

Given the stereo camera setup, Fig. 1.1, with 2d the distance between the
two cameras (assumed known), and f the cameras focal length, the
transformation from a 3-D point with coordinates (x, y, z) to the left image
point (x',y') and the right image point (x",y") is given by (21

f(x-d) f(x+d) fy
x - , "- , y' W ya M (2.1)

f-z f-z f-z
From the right and left images the depth z can be recovered using (2.2)

2df
z M f -(2.2)

In order to recover the depth from (2.2), the pixels from the right and
left images, Fig. 2.1, must be registered first correctly. In order to 0 0
register the two stereo images, a point from the object must be matched with a
point on each one of the two images. A matching algorithm, similar to the one
introduced in (5], is used to find the most likely match between points on the
right and left images. The algorithm is based on two assumptions: 1) each
point in an image can only have one depth value; and 2) a point is very likely
to have a depth value near the values of its neighbors. The slightly modified
version of the algorithm (1] is given by

Cn~l(xy, d) "•cn (x',y, d',-£Czn (.'y ,d"+ ÷C0(xl, y, dl (2.3)

X",y,.d' E S x,y',d' E 0

where S corresponds to the excitatory region and 0 corresponds to the
inhibitory region. The constants C, c, and 1 are arbitrary design parameters.
The function C is given a value of one if a specified threshold is exceeded
and a zero otherwise. The sigmoid

exp(nx) - exp(-nx)
siglm(x) - (2.4)

exp (nx) + exp(-nx)

is used to smooth out the thresholded output. The excitatory and the
inhibitory regions are illustrated in Figure 2.2. The eight excitatory points
have the same depth as the point of interest. If some of the inhibitory
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points are on this will tend to keep the point of interest turned off, since
only one depth value can oe assigned to a point. Another important assumption
in this matching algorithm is that both cameras are able to See the exact same
part of the object. This means that there are no points on the object that
are seen by only one of the two cameras.
2.2 Model of Translational Motion

In order to test the ability of the mathcing algorithm (2.3) to estimate
the position of an object undergoing 3-D translational motion, a sequence of
stereo image. were generated using the model of a random accelerating object. S
The continu..,-time dynamics of the object with random acceleration are
described by the state equation

010000 0 x
000000 1 VX
000100 0 y

(t) - 0 0 0 0 0 0 x(t) + 1 wit) , where Z- Vy (2.5)
000001 0 z
000000 1 Vz

is the state vector, and w(t) is uncorrelated,zeromean,white, gaussian
noise with covarariance q(t)6(t-T), with q(t) f 0 for all t.

Notice that the dynamical model (2.5) is chosen to be unstable,
constituting a worst case testing paradigm. Using (2.5) and the 3-D to 2-D
projection equations (2.1) a sequence of images were generated, from which the
position of the object was estimated using the matching algorithm (2.3).
2.4 Simulation

The model (2.5) was used to describe the 3-D motion of a flat thin
surface that was used as the object in the simulation. The transformation
equations (2.1), (2.2) were used to transform the position of the four corners
of the object into pixels on the two image screens. All pixels on the two
image screens located inside the four corner points were also turned on. The
resulting two image screens were then fed into a matching algorithm (2.3) in
order to match points on the two images. The matched pixels were then used to
get an estimate of the depth of the object using (2.2).

The distance between the two cameras was set to be 8 meters so that the
right and the left images were considerably different. The focal length, f,
was 0.5 meters. The two cameras were assumed to be moving in order to be able
to "see" the object at all times. The cameras move to the most recently
estimated (x,y) location of the object between two consecutive images. The
cameras are not moving in the z direction. Both images have a resolution of
16x16 pixels. The estimation errors in the x-direction are shown in Fig. 3.1.
The 2stimate in the z direction (not shown) were clearly the most inaccurate.
The main reason for the poor z estimate is the low resolution. The
denominator of the z expression is especially affected by the resolution,
since it depends on the difference between the two x estimates. Seeking
improved position estimates, the extended Kalman Filter is considered next.
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3. UT=B!ZCE M& = EC•iUTM ALm N FILTU M W $20O CiAMN
The position and the velocity of the object are estimated given the

observations of the location of the object on the two image screens. The
observations are assumed to be noisy. The noise is introduced from
inaccurate readings of the image screen as well as from low image
resolution. The nonlinear transformation equations (2.1), (2.2) suggest the
use of the Extended Kalman Filter (ZKF) (7). The dynamical model and the
state vector are given by (2.9) and (2.10) respectively. The observation
model for the EKr was obtained from the transformation equations (2.1),
(2.2) by adding noise to account for the measurement noise at the camera and
errors in the registration of the images. The EKF measurement vector is

f(x(t)+d) / (f-z(t))
fy(t) / (f-sit))

X(t) - f(x(t)-d) / (f-z(t)) + V(t) (3.1)
fy(t) / (f-z(t))

where v(t) is uncorrelated, zero mean, white gaussian, noise with covariance
r(t)5(t-T), with r(t) &0 for all t. The initial conditions for the state
vector are taken to be gaussian with mean z(0) and positive definite
covariance matrix P(0). In (3.11, f is again the focal length and 2d the
separation between the two cameras. Assuming constant acceleration during the
sampling interval, the discrete time system is obtained from (2.5):

Process model Obaezmation Model

1T00001

0 1 0 0 0 0 f(x k +d) / (f-zk
001 T00 / (f-z)k-1 0 0 0 1 00 0 -W k (f-zk) + Vk
0 0 0 0 1 T f(xk-d) / (f-z)

0 0 0 0 0 1 (3.2)

where T corresponds to the sampling time. The noise covariance matrices for
Vk and vk respectively are given by (3.3). For the ERF equations see 19].

4 3
0 0 0 0

T3 T2o
0 0 0 0 [/T 0 0 03 2
T4 0 

0 0 l IT
S3 0- 0 0 I/T 0 (3.3)

T 3  0 0 0 1/T

0 a 0 0 T 4 T

0 0 0 0 TT3 2
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3. Simulation

Using the dAiscete time equations (3.2) through (3.5), the object position

and velocity were estimated using the EKY, [11, (7], (9). In order to prevent
the object from moving out of the field of view of the stereo camera, the
camra w1s assumed to track the object using the estimated velocity in the xy
directions. In the simulation, a focal length of 0.5 moter, a sampling time
of 1.0 seconds, and a spacing between the two cameras of 0.1 moter were used.
Assuming that the z-coordinate of the object was initailly -500 moters, the
initial field of view is 100a wide, (9]. The fields of view of the two cameras
are fairly narrow due to the large focal lengths. The sampling time of 1.0
second implies that images from the two cameras are available every second. A
shorter sampling time will increase the performance of the filter, but since
the processing of the images takes considerable computation time, a trade off
has to be made. The sampling time is therefore set to be 1.0 second.

The observations are generated by the transformation equation from 3-D to
2-D using (3.1). It is a-sumed that the points from the right and the left
image have been matched previously. The filter is run for 300 iterations and
the state error along with the diagonal elements of the error covariance
matrix , indi -cated as "camera model," are plotted and shown in Figures
4.1-4.5. The parameters q and r are constants that multiply the covariance
matrices Q and R respectively. Note that the error in the velocity estimates
is very small while the position error grows occasionaly before returning back
to an acceptable range. The estimate in the z direction is the most
inaccurate. This is due to the nonlinear transformation equations. The
inaccuracy in z affects the other pusition components as well. The resulting *
estimation errors are fairly large and biased.

Since the z term introduces large errors in the estimation, the filter was
run with fixed z and Vs in order to observe the difference in the estimation
error. The resulting state errors and diagonal error covariance elements are
shown in Fig.s 4.6-4.7. Notice how all the error covariance elements reach a
specific value. The state errors are considerably smaller in this case. In
addition, the state errors average out to zero.

The effect of the nonlinearities in the observation equation (3.2) can be
studied by considering the Taylor's series expansion of the h vector in the
EXF given by A A A

h(.) - hm + *. ta - 30+ H.O.T. (3.4)
where h and 8 have been defined previously and H.O.T. corresponds to higher
order terms. The higher order terms are neglected in the filter. The
approximation error that is made from neglecting the H.O.T. in (3.4) can
subsequently be estimated. The nonlinearity in the observation equations
(3.1) comes mainly from the z term in the denominator. Using (3.4), the
nonlinearity in the denominator of the observation, equations can be
approximated by

1 1 1

f (z - z) + error (3.5)
A (f - )1

from which an approximate expression of the expected approximation error is
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(f - z)(f - -( Af 3

(3.6) gives an expression for the error made in the approximation of h(a) by
the linear terms in (3.4). The error is plotted and shown in Fig. 4.8. The
error is relatively small but introduces a bias on the state estimates.

4. DI UMDRTU OM T!ROWE A M&L RPAM&
The model in section 3.1 produces inaccurate estimates of the object

position and velocity. The estimation error in the z direction is especially
inaccurate. It was seen in section 3.2 that the estimates can be greatly
improved if the depth z were known precisely. The estimate obtained from the
stereo camera could improve if accurate estimates of the depth z were
available. A range radar is used to estimate the depth of the object
separately. Once the depth is estimated, the estimate is fed to the camera
filter to estimate the x, y components. The range radar is introduced in
section 4.1 and the integration of the range radar filter and the camera
filter is presented in section 4.2.
4.1 The Range Radar filter

The range radar measures the distance (range) R to an object, along with
two associated angles, the azimuth 71, and the elevation c [81, (9]. Using
polar coordinates allows us to perform tracking in the system from which the
measurements are obtained. The transformation between the polar coordinates
(R,71,C) and the Cartesian coordinate system (x,y,z) used in the camera model
can be found in (8], (9]. The range radar filter is a coupled filter
containing a range part along with an angle part. The angle filter consists
of two individual filters for the two angles. The state vectors are given as
follows

XR VIR ; - VrH ; v •C -- (4.1)

The flow chart for the processing of this coupled filter is shown in Fig. 5.1.
The system models are given by

ZR - #*Z + M ; it N(0,Q0) (4.2a)

' a *R: + v ; w N(O,Q ) (4.2b)
H N H H H H

xV - 0VZv + V ; N(0,Qv) (4.2c)

where the sampling index has been suppressed for simplicity. The
measurement models are of the following form

s - hexR + R v R N(O,RR) (4.3a)

* - hz Hx + V ; ViY " N(O,R ) (4.3b)

xV = hVvv + v ; v " N(O,Rv) (4.3c)

The transition matrices are defined as
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2T2 T I + 2-2 0i-P-c0 0
where /V2 +V1 V T

VP - H v C - 1 - -2- R ,RCOC (4.5)
R

The observation matrices, , , , are constructed based on that all the
entries in the three state vectors are observable. The matrices are given by

hi h ] (4.8)

The error covariance matrices for the model and the observation noise have the
following structure (8]:

3 T 5 T4
yo- 2 8 I % RR (4.9)ST4  T3

The linear Kalman filter (7) is used to estimate R, 71, and c. The transition
matrices are updated of the beginning of each iteration. The estimates of R,

71, and c are used to generate the depth estimate according to z - cos0cos0.
4.2 The Integrated Filter

The estimate of the depth obtained by the radar filter is used in the
camera filter to help estimate the x and y coordinates. The integration of
the two filters is illustrated in Fig. 5.1. It is assumed that the target
motion can be accurately modeled as the motion of a randomly accelerating
object. The actual data in the range radar filter is generated from the
actual model through the transformation equations (4.3). However, in the
range radar filter, it is assumed that the data is generated by a target
undergoing a random maneuver during the interval between the 70th and the 90th
time step. Thus, an intentional mismatch between the actual model and the
perceived range radar model is introduced to test the robustness of the range
radar filter and the integrated filter, (91. The estimate of the depth is used
in the transformation equations in the camera filter where it is treated as a
constant. Thus, the resulting Kalman filter is linear. The cameras are
moving as described in section 2.4. The object motion is strictly
translational. The rotational motion is covered in section 4.5.
4.3 Simulation

The integrated filter in the previous section was simulated with the
following parameters: T-1.0, f-0.5, d-0.1, q-0.01 (for camera filter),q-0.1

762 / WSPWVe. Sww Fwe I Hymen DMaMune $•Wef7Nhj

0 0000 0 *



(for range filter), r - 0.0068 (for range radar filter),r- 0.01 (for camera
filter and angle filters), T - 100 (maneuver time constant in range radar),l i

S- 1.0 (maneuver standard deviation).
I 0

The choice of a lower r for the range radar is based on the assumption

that observations in this case are fairly accurate. The range radar filter 4

assumes that the object maneuvers in the interval between 70 and 90

iterations. The parameters that are associated with this maneuvering is given
above. The resulting estimate errors and the related error covariance
elements are shown in fig.s 4.1-4.5. Comparing these figures to the figures in

section 3 it is easily seen that the errors are reduced. The errors average
to zero as in the fixed z case in section 3. The elements of the error
covariance matrices behave better as well. The error covariance elements for
the range radar are reinitialized when the difference between an element in
two consecutive iterations is smaller that 0.001. Note how the errors are
decreased every time a reinitializing occurs.
4.4 Estimation Based on Mono Camera

Since the depth in the integral filter is estimated with measurements from
the range radar, the use of the stereo camera seems redundant. Comparison of
the x- direction estimates, similarly in the other directions, obtained with a
mono camera, Fig.s 5.3-5.4, with their stereo camera counterparts, indicates 5
that the estimation errors and the error covariances are higher in the mono
camera case. The use of a stereo camera is therefore justified.
4.5 Rotational Object Motion

The previous models have assumed that the object moves with only * *
translational motion. Naturally an object very rarely moves with zero
rotational velocity. In this section rotational object motion is introduced.

Initially the rotational velocity is assumed to be known and constant.
The rotation is taken into account in a modified model of (2.3). The
observation equations remain the same. The z and zvel estimates are fed into
the camera filter from the range radar and will be treated as inputs in the
camera model. The resulting discrete model is then given by

1 0 T-w&T 0 0 wyT 0 0 0
0 1 0 0-w&T 0 0 0T 1 0
0 10 0 0 0 0 1 0

Z.-W wT 0 0 1 0 T zk + -wxT 0 0 0

0 wrT 0 0 1 0 0-.xT a 0 1 4.100 0 0 0 0 0 0 0 0 1

whore (wx,WY,w) are the known constant angular velocity. The covariance
matria Ow of the noise Wk is given by

jqAT 0
w-' [0 qAT (4.11)
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The state vector a is given by

x
Vx

Vt,x
• " y (4.12)

Vy
Vt . y

The covariance Q that is used in the filter equations is given by

00 [0 0 0 0 0 0
10 r 1 0 qAT qAT 0 0 0
1 0 0 1 1 0 0 0 0 qAT qAT 0 0 0
0 0 Q[ 0 0 00 1 1] 0 0 0 0 0 0
0 1 0 0 0 0 qAT qAT (4.13)
0 1 0 0 0 0 qAT qAT

The range radar model is the same as before since it already incorporates
constant angular velocities. The above model was simulated with essentially
the same parameters as in the translational case. The sampling time was 1.0
second and q was set to 0.01. The angular velocities were all set to 0.011
rad/sec. The resulting estimation errors and the corresponding error
covariances are shown in Fig.s 5.5-5.6. The estimation errors in the position
are basically the same as they were for the purely translational case, whereas
the velocity estimates are worse.

Next we consider the case of random angular acceleration. The angular 0
velocities cannot be treated as constants in this case. Both the camera
filter and the range radar filter have to be modified. In order to avoid
additional nonlinearities in the camera filter, the angular velocities are
estimated in the range radar and fed into the camera filter just Like the
estinates for z and zvel are. The augmented state vectors in the range radar
are given by

t ;M(!M zv- Wv (4.14)

where (iuIi,wV) is the angular velocity. The system models are given by

S- O + W - N(O'Q ) (4.1Sa)

3v- + v v-ý RT + ;v v - N (0, Qv) (4.15c)

The state transition matrices are defined by
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20
I T 0 0

2 wp 2T
WP T (4.16a)

0 0 1 T

0 0 0 1

T 1 T1 -'c' 0 o z -- c, o 0
R H R it

0 pR 0 0 0 PR 0 0* ft * O- ft 4.16b1

0 0 1 T 0 0 1 T

0 0 0 1 0 0 0 1

where all the parameters have been defined previously. The error covariance
matrices for the model noise have the following structure

T T 0 0
T4 T3

22 4 T 0 0
1- ,- -• 3 (4.17) *

Ta 0 0 -

4 3

T3 T2
0 0 T-

The camera model is modified in the following way

1 0 T -w&T 0 0 wyT 0 0 0
o 1 0-iZT-dT 0 WY cYT 1 0
0 0 1 0 0 0 0 0 ri 1

", -"T 0 0 1 0 T ,k + -wxT 0 L;kI 0 0 [V,,
uwT wzT 0 0 1 0 -L.T-*kT 0 k 10 Wyk

0 0 0 0 0 0 0 0 i 0 1
% .(4.18)

where (wx,wy,wz) and (uww) are estimated in the range radar filter witt.
the use of the transformations in Appendix 3 in 11], (9].

The model described above was simulated. The parameters in (4.11) werr,
used. The initial values for the rotational state vector entries werr:
selected as follows:
(RWHWv) - (0.01,0.01,0.01)(WR,(M,WV) - (0.001,0.001,0.001) (4.19)

The resulting estimation errors and the corresponding error covasiance.
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for the object position in the x-direction are shown in Fig.s 5.7-5.8. The
errors are close to previous results. Figures of the estimates in the other
directions and in the associated velocities can be found in (1], and [9].
The overall performance of the filter degrades when the angular velocity
chanO0es randomly as expected.

COW s3U 9
Three different approaches for estimating the position of and tracking an

object undergoing 3-D transaltional and rotational motion were considered.
One approach involved a stereo camera and position estimation directly from
stereo image registration. The second approach involved a stereo camera and
use of an Extended Kalman Filter (EKE) for position and velocity estimation.
In the third approach, a range radar was used to estimate the depth from
separate measurements. The depth estimate was subsequently used in an ZKF to
recover the object position and velocity (both translational and angular) from
a sequence of stereo images. Numerical comparison of the three approaches via
simulation indicates that the range radar - EKF integral filter is superior to
the other two approaches, Fig.s 4.1-4.5. Furthermore, the integral filter can
track successfully objects undergoing 3-D translational and rotational motion.
From the simulation results is seen that the effects of random rotation are
more visible in the velocity estimates (1], (9]. The position estimates were
very closed to those obtained in the purely translational motion case. The
performance is, therefore, not affected by the random angular accelaration,
except for the estimates of the compound velocities.
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DIGNET: A Self-Organizing Nettrai Network for Akutomnatic Pattern Recognition. Classification
and Data Fusion

Steilo. C. I. Tliomropouios *Dimlitrios h. Bougouiias
Decision and Control Ststems Laboratoiry

Department of Electrical & Computer Eaniaenisg Department of Electrical Enpaefag
The Peaneavviana, State Univrsity Uaiveruity of Southern Illinois

Universitv Park. P.A 16802 Carbondale. IL 621901

Abstract
DIG% ET is a se(ogmm~autiicai neural network I ANN) that exhibits dottormisasticaliv reliable behavior

to noise interference. whem the noise does not exceed a pme-pecillod level of tolerance. The, complexity of the
proposed ANN. in terms of monroe requirements vensue stored patients. increases Insearly with the number of
-tored paLtftersandtheir dlmnsontaliiV. rhoespif-oruigasion,11 of the DIG.%FT is based on the idea of competitive
4eaeratiom and elinuitaaaaon of attreactoun Vella in the pattern space. DIGXET is used for Pattern Rtecognition, and
Clasuitcatiom and for Signal Detection and Fusion. Analytical and numerical results are included.

1 Introduction
\lost artificial NN's (ANN's) that are used in the literature for pattern recognition and claissification require that

the Patterns t hat are stored and recognized be orthogonal with each other (f(11, (2]. [3]. (41.L (5). (6]. (T7)). Furthermore.
they are usually vulnerable to noise interference, in the sense! that a usually small deviation from the orthogoaiaitv
assumption renders them unstable. For a viable neural.based solution to the recognition /claasification problem in
the presence of noise the artificial neural network must be designed so that it is. by design and not by incidept.
robust to prespecified noise margins. DIGNET. the artificial neural network that We propose for automatic pa~tt:r
meognmttott and classificati~on. signal, detecti~on and distributed data fusion. reflects this philosophy.

2 Proposed Artificial Neural Network Architecture
Ideally. the input-output characteristic of an ANN that is used for pattern recognition and classification in

cluttered noise should resemble that of Fig. I. In Fig. 1. the horizontal curves represent -attraction wells" arouna
the stored patterns. If the stored patterns are identified with equilibrium points of the ANN dynaniicu. then the
attraction wells of Fig. I represet attraction regions around thins points in a multidimensional space. Thus. if the
noise is identified as a percentage disturbance of the stored patterns, the attraction wells represent hyperspheme of
predetermined radius around the patterns. So. if the ANN is preented with a distorted pattern that lies in one of
these attraction regions. correct recognition (and classfication) will be guaranteed from the convergence of the ANN
to the correct equilibrium point. Ift on the other hand. the ANN is initially presented With a pattern that lies outside
any of the attraction regions. a new attraction well will be created and the ANN will converge to the ankaetu. pitifern
as at should. Thus, an ANN with the characteristic of Fig. I exhibits learning capabilities, since new patterns can be
stored by extending the attraction points of the operating characteristic in Fig. 1. Furthermore. the noise tolerance
of the ANN can be changed by modifying the -width' of the attraction wells. Dignet dynamically realises the ideal
characteristic of Fig. I.

3 Directors and the unity hypersphere
In linear system theory eigenvectors have only meaning as directions. their magnitude being undetermined. Any

vector that lies in the direction of an eigenvector of the system is also an eigenvector independent of its magni~tude.

*Th.resew was penally supported by 5DIOT/IST and .taaptl by the ofice of Navai Ptesemrci under contract N00014-K-051S.
tPresently with the Greek Air Force and with QUALITY Imports/ Exports. linc. Atbass. Greece
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Figure 1: Ideal characteristic of ANN for Automatic Pattern Recognition and Clamhicatio

On the other nand. a pattern is well defined irrespective of scaiing or reversal. For instance we can recognize a visual
shape even under different light intensities iscaling), even if we see the photographic negative jreversal). The above
examples can Motivate the COncp1,ualiation0 Of patterns AS Straight lines in the n-diMeUSamoa Space. To further
understand the operation of Dignet, we introduce a mathematical entity that we call Idirector."

Defainiion 3.1 Am n-dawseuaseal director is the set of all rectors 1,wug on Ike some strssqht line passta through,
the origmn of an n-daamaenmoal sector spae. We use the notation a. b. c. d... to sindieute directors.

We shall prove that the set of all n-dimensional directors n r-directors) is a metric space. 0
Definiion 3.2 for two n-directors a. b we define as distance efa. b) lthekasolvte value of the acute antic betwueen
say two of their elewment~s. In terms of the vector space of can be expressed as

eta. b) = arccos (I.........4 (1)

where z. y rectors so that z E a. yE C-.

It is easy io see that this distance fulfills all the properties of a metric:

1.Nonnegative because arcecos(z) E [0. r/21 for z E [0. 11 (CBS inequality)

2. Symmetric. obviously if we interchange a and b in the formula.

3. The triangle inequality clearly holds for the 3-dimensional space (with equality when all 3 directors lie on the
same planie). Howerver, any three. non-collinear vectors i or straight lines) span a 3-dimensional subspace in the
ni-space that is homomnorphic to the 3-D space. Therefore. the metric properties hold for the n-dimensional
space. too.

Thus, the aet of all n-direcors is a metric space.
From the definition 3.1 it follows that a director being a sot can be prepemeted by one of its elements. A good

choice is the vsty~ vector that belongs to the particular director. This choice simplifies equation 1. If X and Y are
unity vectors represenimng the directors a and 6 respectively, then

9MX.Y) = arccos(I < X. Y >) (2)

and the directors can be further represented as points on the surface of the unity hypersphere. In figure 2 we see the
3-dimensional cane This mapping of pattern vectors to unity vectors can be achieved by normalization and reduces
a a-dimensaaeal problem to a (n - 1)-dimensional problem.
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Figure 2: NormaizeISd patterns and the unity sphiere

The topoliogica properties of this mapping are in~aterntg. howevor the algebraic properties are complicatea.
Therefore. to simplify things We mUMe that the angles are small, then in the limit the surface of the splere can De
treated as a tangent plane. Then if we consider a neighborhood N(P,.D0) around the pattern P.. where 9 (theta i
is the desired angular threshold for pattern matching. we say that a pattern as recognized by the exemplar P if its
Projection On the surface of the sphere falls within the above neighborhood.

Since the vectors are already normalized, the angle corresponds to the inner product between vectors. and the
compariso of a new pattern with a number of prestored exemplars can be achierved with a aimple parallel vector *
matrix multiplication and thresholding of the output. wheoe the rows of the matrix correspond to the exenplars.

4 Description of Dignet
Digne is a self-organisang neural network that can stoem and clamify notrv inputs without supervised training.

Its self-orgaanuation capahltye is based on the idea of competitive generation and elimination of attraction wells.
The wells ame generated around presented patterns which are clustered according to their distance from the center
of wells. The ceteam of a well is moving dynamically towards the highest concentration of cluetere Poants in the
Pattern consteillation. The depth of a well indicates the strength of learning and reliects itot the inertia by which
the center of the well is moving when new data falls within its region of attraction.

A schematic diagram of Dignet is shown in Fig. 3. The pattern recognition and clsafmucation ability of Dignet
is characterised by the competitive creation and elimination of attraction wells. Each well is characterized by its
center. width (thireshold), and depth. The similarity between patterns in Dignet is measured in terms of the angle
that the patterns form aamog themswelves. It is assumed that all patterns are normalized, so that the magnitude of
a pattern does not sleet the claumfication capability of the network. Assumiang that a number of wells; has already
been created. the cliange in the Dignet geography once a new pattern is presented are as follows.

Let a,, represent the pattern that Ws presented to Digneit at the n-th time instant. If e,,.. represents the centeir
of an exising well in Digne at the time the new pattern is presented. the center changes according to

do, - e, + -e,,..L, with initial conditions Co Z 0. (3)

where c6-1a is the depth of the well at the n - Ist presenttion. which is updated according to

do .a d-,+ c,,with initial conditions d =0. (4)

and c., is a iariable tha take on the following value

(I if the pattern is won by the well (reinforcement)
coM 0 if the pattern do"e not fall in the Well (no interaction) (5)

I. if the pattern falls in the well, but is not won by it
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Figure .1 Schematic diagram of DIGNET0

The width of a well (threshold) determines the region of attraction and is determined by the specified (desired)
signal-to-noise ratio (SNXR). The threshold is measured in degrees of angie from the center of the well. Given a SNR..
the threshold (cosmnei is determined by

threshold = V7110 -1r(6)

and the well width (in degrees)
On = arccosl threshold) (7)

Equation 6 is obtaned from figure 4. The nois component that contributes to the angular deviation from the
center )f the well s is normal to the pattern. Therefore for worst casn analysis we can asume that the now. is normal
to the pattern. If We Cut the n-dimensional hypersphere by a 2-dimensional plane so that the vector s lies on that
plane as well as the center of the hypersphere. then we reduce the problem to an equivalent 2-dimensional problem.
Then < nt. nt > +I = A2=< s + na. s + n > by the Pythagorean theorem. Then

cos(e) =IA = :;11 ~n(8) 0

By using < nt. n >= v2 (in expected value sense), we obtain

coa(e) = 1(9)
71 =, 41

from which, using tie relation: =~(0

(8) follows.
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Figure 4: 2-dimensional projection Of Pattern and normal nows

Once a pattern is presented to the network. its distance from the different wells is computed. If the minimum
dsistance exceeds the well width, a new well is created: otherwise the pattern is assmned to the closes well. which is
reinforced. Furthermore. if the pattern, in addition to falling in the region of attraction of its closest Well, falls in
the region of attraction of other wells as well, these wells are weakened. their center is pushed away and their depth
decreases according to the above equations. To avoid excessive. spurious wells, a staft aqt Ist.) ias defned. The
depth of easc well is Periodically examnedW at the end of each sa... If at the end of a s.&.. the depth of a well does
not exceed a certain threshold (age), the well is eliminated all together: otherwise it survivesi this Stage age.

5 Stability and Convergence Analysis of Dignet
For reasons of analytical compactness, we perform a stability and convergence analysis of Dignet by using the

continuous time equivalent of the self-orglanizing algorithm (equwaios 3 through 7). Simple manipulation of the
discrete-time algorithm. yield the following continuous time algorithm:

ge(d ,(~ -!d.(~z (11)

= ie0- e.d).M))> OI(211e(eM(). Lit) a min{e(ei(i).41()))] - 1) (12)

where ei(S) designates the center of the i-th well in Dignet at time t. d,(9) the aMWSocatd depth, and

e(ej, zt)) = atecos <e (g) z it)> (13)

1ifll is the indicato function defined to be one if the ewent 0l is tmue and rero otherwise. The minimum in 12 is
understood over all musting wells in Digest at time t.

Assming zeo initial conditions on d(O). i.e. d(O) z;0. the solution to the differetial equation I11 is

e(t)d(f) 1.d(r):(r)dr (14)

where the notation -d(f)" is used to indicate the time-derivative of 41t). Assuming d(t) * 0. and using the convention
0. the solution 14 can be writen as

e1(tM = fo~di~izrwrr fdif?):(r)dr (15)d(t) f.'jd~rWv

For the i-t Dipset well with center e,(a). the integral in the denomninator of (15) represents the average time that
any input pasen zjt) fell into the region of attrction of well iand wonby this wed (i.e..it was claimcto the center
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*,(t) than to any cither well centeri. ItutUS (the av.erage tme th~at any other patterna fell into the region oi attraction
Of Well i. but was lost over to conmpetit loll. MTe convent-ý>n U . is assumed Iin the analysils.) Thus. (1.i, prooauc,.
weii~s with centers the* stiectire tiireavorages of Jifferent .,4put noisy patterns. Furthermore. it eliminates weill that
are created front overlapping we'll boundaries. The solutions (1-5) are stable. assuming finite mean uaia. and converte
to either a time avttage if the pattern persists III tiet Input data. Or sWO if the Pattern is spurious. Tile stage-
age paranmete. as.a. that was introduced in the description of Dignet facilitates the eliruminet of atUnsul~ained j sit
undesired spurious wells. in order to keep the storage capacity requiremlents of Dignet manageable. The algorithnm
(equations 11 through 13) or. its equivalent diascrete time version (equaton 3 through 7). is thus Capable of Welf.
organization ano can be usedi in a neural network for claas-discriumnaon amoing different clasm. that are separable.
by hyperaphere. Claim.. of patterns whicii are separable by more complicated boundary shapes can be diserimuinie~'
Iii Dignet through selt-orgsuizatiota. if a different metric as used to determine the interaction among inpur pat ter,,-
andl well centers, other than the iangle metric iI 1 used in the indicator function /(ten-49e,(e1(). zit)) > 0ji Iin 1121 !'i

6 Comparison with other self-organizing networks
Kohoneniil JIli" proosewd a claas of self-organizing feature MAPS that art basocd onl the adaptatioililawv

dt = ofz.i~n.i).c(1 -j(x.tn.qjnaat Ih
11(t) = ,nT It).ci)17

where 'It I Irepresents the neuron activation tor output for linear elements). Wl) is the vector of the? input e'xcit:£tiol-
to the neuron. and 'iii) is the' "rctor of the A~ynaptic interconnections associated with the neuront and the iiirui
vector xt t I o( ) and -(-) are. iii general. functiona. ipossibly nonlaneari of the synaptic weights in. tlie Input c. an-ii
the neuron outout. Y?. In Kohoneta s self-ortanizat Ion feature maps [9]. the class of functions o(l ) and -I )t hat I,,
considers are i imoryless funct ions.

To compare DIGNET withI Kohionen i miaps we rewrite equations III) and 112). by dropping the tiiae-eleppnueii".
for notational coniveniencre. ms lollowit*

d d

d = (fln -((et.~l)> 0)(21(efe.(O)..(l)) = nianjeF)1(t).x1))J] - 1) (1h¶.i

with out put equation a( e 20

where- tilt-' 'axuinuni I taken over alil cetuter-pai terns of created wellb (ciustersi. and P is the matrix of the store-4
Patterna ia inatrix with the titored patterns as rows). By Comparing equation ( 16) with i-quations ( 18) and ( 19). aiio

d-

the Dignet algorithm extends the class of Kohonen's feature maps by introducing memory in o(-, and Another
class of algorithms that can learn to discriminate among a number of different patterns (hypothesesi. are nas.eI
on the itarninat vector quantization (L%*Q) algorithm and the creation of Voroinot vectors in the pattertn spat'.e to!.
(11). However, the L%'Q algorithm, and derivative algorithms from it. requires that the number of unknown pat teril
(hypotheses p is precisely known a priori, much the same way Kohonen's self-organizing feature maps; do. Furthermore
the number of Voronoi vectors must be close to the true number of different clusters in the pattern space For
convergence, the LVQ algorithm must. be initialized wtth the proper number of Voronci vectors and initial connitions
that are close to the stable equilibrium points. A modification of the LV'Q algorithm that allows the adaptive upajair
of the Voronoi vectors according to a majority decision rule was proposed in [11). The modified LVQ altorithin
avoids the instability of the original LVQ algorithm due to bad initial conditions, but it requires that the size of the
Voronot cells remains small. thus. not really resolving the sensitivity problem of the alorithm.

If the initial choice of the Voroinot vectors iii the LVQ algorithm is inadequate, there is no systematic approach to
sdaptive'ly chance their numaber as needed. Convergence of the LVQ algorithm depends on the proper ciioico. of iii-
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Vorono. vectors and initialiation of the algorithm ciobe to the actuals table point. Convergence of the Kohoge ss
feature imaps depends on the choice of ol.) and -, j functions. winch are otherwise arbitrary. In that sense. neather
the LVQ algorithm nor Kohonen s feature maps are truiy seif-organizing in the sense defined by Dignet. since the
numoer of different patterns need to be known a-priori, and convergence is sensitive to the choice of initial condition.
In that respect. the guaranteed convergence of the Dignet algorithm to a number of stable claimes, given noisy daa
from an unknown number of unknown patterns represents the novelty of the algorithm that differentiates if from t "e
LVQ algorithm and Kohonen s feature maps.

7 Capacity of Dignet S
Determination of the maximum capacity on Dignet to store patterns unambiguously depends on the metric that

is used in the well formation. the dimensionahty of the patterns, and their separation from each other in the aboses
of noise. The maximum capacity of Dignet to store input patterns unambiguously depends on the maximtum 8ammu
of tolerable deformation, which depends on the prescribed SNR. and the initial separation of the patterns. The
capacity of Dignst when the metric (I) is used in the well formation is discussed next.

For n-dimensional input patterns, assumung that the separation between patterns is equal to en = arccoi iteh),
where thresh = 11 +o,2- )t With 0,2 = I 0O'•N)'R/O2 the noise variance and On is measured in radians. ai approximatio
of the maximum capacity of Dignet is given by

( " .- (_Z_(221

if a pattern and its negative are indistinguishable. and h%

C. -4 _:.T 1(23)

when a pattern is distinct from its negative. S S
The maximum number of unambiguous classes that Dignet can create increases within the dimensmality of

stored patterns. since the number is proportional to ratio of the surface of the hypeasphere where the well centers
are situated to the surface occupied by the width of a well. The estimates on the maximum capacity of Dipet are
thus obtained by comparmng the area of the surface of the n-d4imenstsosli sphere with the atea of %he hyperdome oa
solid angle eo .Notice that this capacity can be much higher than the capacity of conventional neural networus and
it is limited only by the minimum desired distance between exemplars that is dictated by the amount of noie that
the network is required to be able to tolerate. The advantage of Ditnet lies. thus. on its ability to create clauses with
prespecified noise tolerance. For example. for tolerance to SNR = U db. or= = 1. thresh = 2- which corresponds to
Oo = :ri4. and thus C, = 2n-' for indistinguishable negative from positive patterns, and 4V- for distinct pomuve
from negative patterns. Hence. for 0 db SNR. the well width should be set at 900 which corresponds to a threshold
of 45). For tolerance to SNR = 24db. the well width drops to 260. which corresponds to threshold of only 130. which
yields a lower bound on the maximum capacity of Dignet equal to 6.6T"'- or 13.34' 1 depending on whether the
Dignet is designed to be insensitive to orientation of not.

8 Implementation of Dignet
An implementation of Dignet is shown schematically in Fig.3. The different input patterns are represented by

vectors that are stored directly as rows of the matrix P. The vectors are first normalized to render the recoitionD
and classification abilities of the network insensitive to magnitude variations in input patterns. Since Dignet may
be used for recogniuon ann clasification. the network must be independent of the relative level of intensity in the
input patterns. Normalization of the input patterns creates equivalence clauses between collinear patterns.

Once an input pattern is presented in Dignet. it is first sampled. and the samples vector z is normalised. The
product Pz is formed and then passed through a vector threshold function If(.). The sample-and-hold operatio
prevents any input change during learning. Each element of the product u, = Pzt is equal to the inner product
between x and the stored exemplars i mantrx rows) in the matrix P. Each element of the threshold vector funcotio
fI,(-) equals the maximum tolerable SNR between a pattern and the corrupting nose expressed in radians betwue
the stored pattern and the nominal pattern. The condition for pamng the threshold is equivalent to the input bein
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within an aingle at most equal to aeccosi threshi from art exemplar. The i-th element of the threshold function is

Notice that tsame
opposite different

Sfrom whit.and-black. If preserva ion of the sign is ot important. w can be replaced by IwI
in the inequalities in the thresholding operation. After thresholding, the output vector is fed into a maszet 131 which

lects the maximum thresholded output. i.e. the exemplar that is closest to the input pattern. Thus. recopntion
is achieved. Classification is achieved by forming the inner product between the output of mamnet and the row
ector %*:=( 123 .... V ... I - If a pattern isnot recognized. the outputs oftmaxetc ae al isero and theeXO egate

becomes high. thus enabling Wearning of a new pattern. During the learning of a new pattern, the -choe available
in function selects the first unoccupied rtow of matrix P to store the new input pattern, thus creating a new weih

with center the new Input Pattern, depth do, and width equal to the threshold angle ei (Gi = arccostgd). If one
of the outputs of the maxet is high. this indicates that the input Pattern has fallen al One. Or MOr than One. of
the attraction regions of the existing wels. In this cas training of the matrix P takes place by updating the Center

and the depth of all the wells that have nonzero threshold output. Furthermore. the stage-age ts.a.3 of all weds
is examined, and wells that do not meet the stoem-age requirement ar eliminated , thus freeing the tow 4isew) they
occupied in the storage matrix. 0

9 Character recognition
The ability of Dignet to self-organze in the correct number of classes according to the number of different classes

of patterns in the input was tested using noisy letter characters and sinusoidal signals imbedded in noise. Eight
64x64 pixel, binary characters were chosen at random. Each character was reduced into a 4x4 character using a 1
16x16 template. averaging the pixel values over it. and then normalizing the resulting vector. Thus. each character
was represented by a Ix16 normalized vector- Noise was added to each pixel of the 16x1 vector from a zero mean.

Gaussian distribution with variance determined by a prescribed SNR. The nose variance was a-/n, with n = 16

and e., = 10 -(sNfRfI' where the S.YR is in dbs. The stage age fs.a.) was taken to be three for these simulations.
Simulation results with two different SNRs. •0db and 24db. are shown in figures 5 and 6.

In both cases. Dignet was able to self-orgaze into the correct number of patterns, eight in this case. The 3-D

plots in Figures 5 and 6. demonstrate the creation of wells (classes during the self-organization of Dignet and are

recorded according to the well depth. For 50dbs very few spunous wells are generated and survived the stage ace.
However. the number of spunous wells increased as the SNR decreased. along with their average lifetime. For both
cases. Dignet was able to classify the eight different input patterns into eight different cime swells).

In Fig. 7 the history of the center of a well is being recorded as a function of the deviation of the center of the weil
from the pattern that it represents. The croses represent the distance of (angle between) the well center associated

with each input pattern from the nominal pattern, and is measured in degrees. The squares are the data points and
represent the distance of an input pattern from the nomunal pattern. The well width (threshold) for this particular
case is set at 130, commensurate with the 24db SNR. Various spurious wells are created during the self-orgizatsLion.

However. only the center of one well gets reinforced and converges to the true pattern, its center distance from the

nominal pattern approaching zero. whereas all other spurious wells get eliminated. Similar picture is obtained when
different characters are presented alternately.

10 Detection of unknown number of unknown signals
An experiment was conducted using eight cosines with integer frequencies one through eight. Each cosine was

sampled at the Niquist rate of the highest frequency. Thus, sample vectors of size lxjG were generated. At each

element of the vectors noise was added from a zero mean. Gaussian distribution with variance a-/n with n = 16 and

= 10 -oSNR120a. determined by the specified SNR. From figure 6 it is seen that Dignet is capable of self-organation

in the correct number of signals for SNR 5 and 0 dbs with a limited number of spurious classes. However. for -5

dbs. the number of spurious classes increases, their life expectancy increases, and the resolution of the correct clases
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CHARACTERS. SNR 50 db

XS

Figure 5: Space-tiroe history of well.creation for eight different chaacters at 50db SNR * •

CHARACTERS. SNR = 24 db

XS

0S

' .m

Figure 6: Space-time histry of wel|-creation for eight different character at 24db SNR
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the outputs isee below) is then fed to the Dignet of the fusion center. which is used as a classifier fonly output 'c"
in fig. 3is used).

Along with the vector outputs of the sensor Dignets. the well depths. of the recognised patterns are fed to the
weighte average stage where they are used - the weighting factors:

F,,, = d,PA (25)

where F,,. is the input vector of the fusion center. m is the number of sensors and P, and d, are the output vectors
and depths of the sensor Dignes.

A deep well is a well that has -recognized" many patterns and a shallow well is one that mast probably is spurious
(created by some euadier signal or by pure noise). This motivates the above topology where a recognized pattern with
a deeper well is tamn into consideration More than another Of les depth. In practice, this Mesans that since a senor
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Figure 12: Probabdiiuss of detection and fainealarm as functidonsof SNR (2 eOgorS) for threshold .T0

with higher SNR produces deeper wells than another with lower SNR. its output is L~aken into higher consideration
by the fusion Dignet. thus. the Dignes fusio topology has built-n fault tolerance.

The binary came (two signals) is a special cas of the case of unknown number of unknown signals. Furthermore.
in the Radar detection problem there is only one signal. Hypothesis H, Corresponds to the presense of signal plus
nOMe and hypothesm He corresponds to the presensae of only name. Without name the absence of signal Would reult
in a Wo pattern vector which is a singularity in the director space, since it cannot be mapped on the surface of unity
sphere (it cannt be normalised). In order for the Dagnet to function in that case the zero vectors must be ignored
(neither recognition nor training is performed). 0

An alternative approach is to map the zero vector by convention to some other vector. This is valid only if the
signal is known so that the choice of a different director is possible for the mapping of the zero vector.

In the applifcation of Dignet on the multisensor radar detection problem tie first approach was used. i.e. the :ero
vector was ignored. It is thus expected that the signal will create a single "deep" Weil corresponding to H, and in
the absence of signal. the noms. having random direction, is mapped on the surface of the unity sphere in such a way
that no matter what is the wnam distribution, the distribution on the surface is isisfoerm. at least, in the Gaussian
names cms. Thii causes shallow wells to be created (unifomy) on the surface and disappear after very sort tine.

For the folowing experiments a cosine was sampled at the Niquast, sample rate sand Gaussian noise was added to
the sampled vector element by element. as in section 10.

In figures 12 and 13 the threshold is. .70 and .85 repcively and Pp and PD are plotted vs SNR. We notice that
Pip assumes a minmumm value and it cannot decreas further no matter how high the SNR is.

In figure 14 the SNR stays constant at .30 db and the Pir and PD are plotted w-r.t. threshold. As expected they
both decrease as the threshold increases and the well becomes smaller.

The can of unequal SNRsis testedin figure 15. initially the SNR is 0db (equal for both sensors). Pp and Po
are plotted w.r.t. time for 10 time slots. At time I = .5 x 104 the firmt sensor breaks down and its SNR becomes
.80 db.

There is no noticeable effet of the sesow malfunction in the graph. The very high names of the broken sensor
causes -,-- ___; .o but the weighting stage (figure 3) causes the fusion, to ignore the sensor's output. The ripple
in the Pip curm is due to the small number of time samples.

In figure 16 the Receiver Operatig Characteristic is given for SNR -30.
In figure IT the can for SNIR z: .30 is shown for a 3 sensm fusion. The corresponding R. 0. C. is shown in

figure 18.
In figurel19thecasefor SNR = 3Oius sownfor a 4senoffusion. The corresponding R. 0. C. isshown in

figure 20.
We notice that increasing the number of sensors increass the PD. for the Same Pp. For example for Pr. = .003.

with 2 sensors PD. = 0.875. with 3 sensors PD. = 0.95 sand with 4 sensors; PD. = 0.96.
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Figure 20: Receiver Operating Characmistic. Gaumian now. SNR = -30 dB. 4 Sensors

12 Conclusions
A new aruticial neural network. DIGNFT. was introducea for automatic pattern recogniton and classification.

The proposed ANN exhibita ueul-organizataon capabilities according to prescnbed tolerance to nomie interference. and
neuron requirements that grow linearly with the size and the number ot patterns that are needed to be stored. It is
shown tna the self-orgentiaton algorithm of Dignet leads to stable classes that are created aound patterns that ar
sustained in the input data over time. Dignet was tested succesfully with pattern clasficai and signal detection
paradigms.

A seIor fusion topology usiag DIGNETS was introduced and numerical results. for Gaussian additive noi *
showed that Dignest performs well under unknown statistical environments.
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A neural network compuaida alsorithm a introduced to 941Iw for the opstioal ai.roraung in a eamWa N-node
coommunmacoon iinetoik The alpabmba hos. mialblak or aoet-aode madawhnK uaauaae awani nt uncma
(e.#. expeorsed dely). UnlJke the algoixmidu ustiducid sarlier is thi uan. knowledg of he number of liks (hope) betweat
each ongoa-duunaodism pear is not reqasied by the algarihma tuA In at cos be applied to a ow vhriable imingth peth
routnng peiblown. The naaatl network stratur for Mapinuian thes algwin1o is a aodiliaftim to the one usedh by the
TravelingSalnmaimaprduiLCompuowaaulalmum an sumes- and isxuwonpdae V owakshow that tealgonthmt performse
eztarindy well In angl and mouadplet Pat&s

L Intrednimcd S
The0 cMsptabfMta powe amid the speed of Cdlleceve analog network of na1MM an solving opeaMUaSiw problmO have

beoo danonstated by Hopfi"l and Task (1143 through the finow"Travelhaag Salsoman Problms. Anmnuet proceotare anbe
applied to solve a numiber of opaminson pineemms. (6). In orert to solve a proachod optionwaaon problem uasing a neural
network structue. it is natmmy to find algontham for dewtnuunng the canneorona anod weghts of the neural network so
that it convu to the appropriate anawe. lIn thia paper, we sugges a namal network structuare that can detmmane the
optimal rouse for nods-to-node traffic in an N-node commnuniacemon network. The structuare m; an unplanamatinon of the so
calledt "Shortest Path Routnag Algonthin in whaic a togae a selected for every oripnt-desmanaon (00) pear such that the
tramtinaon cost t a uinaintAd df date in mimmenttd along this routs.

The meain function performed by a routing elgorithm as the sulecoon of route, for various onipp-domaminn Pam~
There ae two ma paiormance measres that ane subetantilly affected by the routan algorthm, the thmouhput tqluanflty of
service) and the aveapio delay (quality of sarvica) A pa routing algorithmn should select the roulm whdic have mmuium
avorage delay (thus aillow mon re afic into the network). In the shortes petih algorithm, a cost is associated with every
link an the network. In m omes- the cost is pcoportional v the delys. The obocavo to to land a mulalank path *
jouting two node, that has miniuium total cost Different impleminetiatao of the shortewi paths algorithm. in both syrtchtonous
aid asynchtronou fashion. ame available (4). In this paper we cornader two different NN unphunmistionfos of the shortest: paths
algorithm using tho actual delay and the dalvadve delay as can fuanctions. The neural network structure of the algorithm
was first introduced by Rauch and Waneioka (5]. That method. however, ham strnow limiatanome It an find the shorstme
path forma liver 00 peair only whan the number of links that the path contains as known, which as an unrealistic assumption. A
modifie structime as miggaind in the present paper so that the algorthm can work (or arbitrary and unknown number of IlaMk
ina pven 00 par. The NN that in puesanted in this paper was finet introduced in (71.

IL hraitia Statermost
Consider a N-node network and assume that the conmnectivity of the network us known. Let c. denote the capsary of the

Ulak connecting node a with node . If there as no direct connection betvwan node i and , c1 =0. Therefore. the networbE

can be described by an NN capacity meairi C with entrie c..j. In addition, if every link an the network is a two-way Link

end has the same capacity mminec direction. C is symmesc.
Our ptablnt is to Win the path connecting otipi and deetination node that minimazes a cost function such as the

expecte delay. Since the expected delay wornw a Link is a funtiion of the link capacity c ijand the actual Link traffic

fseveral fwictons can be used to calculate the link cost (4L [5]. F~or example. the link cost w.. an be determined by

w of + Z./(.LJ p (
I) 0 a; 1) 1;

whate fc is the Vimns time for each l"k end Vf ajs the total flow linen all 00-pan* on the link ia; The exponent p

can take any positive value, but commonly used value, are I or 2. The value p a I was used an the simulations. The Lanx
capacity c..- Z L. in (M.D is the rnsidual capacty an the nerwork what paths for multiple 00-peaws are considered. Whent

the optimal padhs for multiple 00-pears an determinued spasintally. the reindual link capacity as determined by
C.q.Z f 4aC.4-Zf ji(previousODpeaw)- Zf . current 003-pea)(12

With p a I in (1.1), two diffittent approaches woen taken to solve for the shortest path. In the finst approach. which
will be idesue to u Meay cms approach, the link cont was computed dire y uiang (I)D. In the second approach. which
will be refered to at dnntmt delay cur approach. the Link cosn was equated to the derivative of w, an U(11). i-e.

1This wor iam partwily supperto by 5D101IS? under Contrat N-=144d-013SI eataid by ONR



which a th lnk tat do s used in the convuansatl. optimal soluawa of the shortes path problem assming convex and

dob~.~aah dely (cos) adilaso 141. The daiferuins in the numensia solutimns obtaned under the two cast

direc link bew Mande Iand ý, W (c.. 0). Ifthis athe ceamaveryleI'nM berIsassigned t 1iowIn the

To illutrasse the problem come the $-nods network in Figure . The number bands each lUnit represens the
coit tponding link com (w,?. The am main W assocuaud with this network is pven an Table 1. wham L &a some Large

pasitiv number.
4

FIigan I A S-Node Netwok

Table I Cuo Ma&Wi for the S.Node Network o1f~g I
I 1 2 3 4 5

I I L 1 4 L L
2 I 1 L 1 8 L
3 1 4 1 L L 2
4 1 L. 8 L L 2
5 1 L L 2 2 L

The shortestpathifram node I to node~s5isobviously 1-2-3-5a & the muumum totalwcost sw 12 W .Z3 .W 3S *1 2 C4

In the next section we tae.oruiuaae the ahortest path algarukim using a asurd network stu'cture.
UL Naomi Netwark Ca=Voflim Aclpr=

In their paepr 15L Rauch and Winairske sugpmted that the solution oftheM shortest path alprathat cm he represented by
a 2.dlmmeonaa nagosirray V a (V 19 with eadh outpu af the naironLit the way having value V 4 a 0of 1. The number of
rowe in the arny is equa to N, the number of noda in the network. and the number aoluwmns is equal to the numbe of nodes
that the path catusbui. For the S-node network of Figure 1, the shoresta path conecting node I and node 5 can thus he
reprucod by

1 1 2 3 4

1 1 1 0 0 0
2 I 0 1 0 0 (2)
3 1 0 0 1 0
4 I 0 0 0 0
5 1 0 0 0 1

It is obvious that for tile array to repraemt a valid path. there can be only am nonzeo antry ton md column and there Can

be at momt one nowweo miry m each raw (do condition a different froen the one reqauird by the WV problem). An nonzesroI

entry in the i4t posi~tio of the arry can be intepreted a "node i is the 0a node in peab. Using this repreasnodlo.a
total NxM nwomat ar needed to represent all the paft. having length (number of nodes in the path) M. GQve an 0D pair, the
fuirt said the bet cowhm of the stay wer fied, so them wre NxO4-2) *cave nmurtm in the way which are free to be
updated.

As we have metiboned in the previous section. this representationi has its llmis~on The problMl with this
represnatiaon is tha it we do not know how many nodes the shortes path would coaitia Ls. M to Wiknown. Rauch and
Wrik smumed that the mamomum number of links betwesi a given 00 par could be obtained in advance &rM the aIpeat
M~Atr C. ix Whic me hi is equal to *hA wUmber Pb. oam However, by choinmg MA "i way, we coy T"n be able to find the
shorteet path because it is poesabl tha a longer path can have lowa total wam then that of a ShOtte Path. In OW 5-.nodO
example. the miunmum number ad links between node 1 and S is 2. If we chowe M a 3, the W~ arry can only give the path that
crotumns 3 nodes. which as 1-3.5 with wam 6. We know though from the previtow diMon that the shortest path is 1-2-3-5
with cast 4. It is obivious that the solution given by Rauch-Winsrsksa (R-W) method is not the com, one.

To overcome the limatahions al the R-W mathod, we fix the number at colufmn in the wamy at N. which is the maximunt
possble number of nodes any path coul acotain * an N-node network. By doing so, the mumro arry tOzN now) can represent
all the paths cotmms N nodes. Since a"i of to ahe have W&tga leas than N, we eshould convert these pSats Into length
N paftE and muntain thir total wam at the same Ume in order tor them to be uepiressied by the NxN arry. This can be
achieved by MAWn sewn seri-cost pamid. Main to ath "sherare pefs, tAe pas wi fsslat eN-Ilakanow "gsl r laqin
is *qual to N. To iuyiintdes " ds W" far *a* ae we inta'dec one weeost psmd link dot e aft N e0e 10 aitef.
The m1 c an then aide at any node along the path through these pesuad li"k without Wasrsg; the tSal weN t O the
path. For the 5-node examtple of Fig. 1, the network afte w aoducing 5 peiada linkto Isheown in F~.2. Table 2 Pve the
asociated west mem

0 00 00 00 *



0 0

00

o 0
Pipes 2 A MeNds NOdawk 14b ffaid. Lhh

Tabh a CON Mob far die 9-ded. D 4.m- ad 11. I
1 1 2 3 4 5

1 1 0 1 4 L L
2 1 1 0 1 8 L
3 1 4 1 0 L 2
4 1 L 8 L 0 2
S 1 L L 2 2 0

By cipumig Ta&e I with Table 2.iaecn am -dies di. on dlderane bI e the IWO CON MaMn 0 that the
diagonal alummm nw bairn =a. vsewed of a lImp number L Uiag lb. meiled mpmemnu me of die poambl

I 1 2 3 4 5

I I 1 1 0 0 0
2 1 0 0 1 0 0 (3)
3 1 0 0 0 1 0
4 1 0 0 0 0 0
S 1 0 0 0 0 1

(3) ahow thai die mhem path b-wo nods I and 5 is 1-1-"4-5 whi'h ca be interpreted a 1-2-34 Note that die
F m imn of atth ddiuai path is we 'mmp eadiAm 1-2-2-3-5. 1-2-34-5. mad 1-2-5&M agrepimuat Owsine aapath

For a sob*@& to be vaiL we neyd. that dism a only one amaim savy in amb cAbi and wtho ad nmb.r of
mnommr - mif a te Waya eyed to X IUnder theme =mtr= die ammp tuadin amadatod with the metwmrk can be
dellnsd asS

E=(A/2)ZZZV ikw #V u.l (3/2) XXXV Vi + C12( Z Z Vi- N)2  (4)
ki j klj i i

wb~e dhe Ont ulpI s~omc goo the WIn cm haom die a"In to dinnsam;n di econd and thurd tern. are the
I I .w a~mpd on the omuipu an the nvzm any to maks at camvue to a vad pfith AA aid C ae p0.0w ccaiomaue

Fo. Equation (4) we anmbt die coneneon waght between w the namin and die ma tah t anrc 0 ha amy

T.. a-Aw (6 +8 *) -86 (1-3 )-c (5)

1ý11111uja ins* ifj~ ici. i

The Ias o beat th e wot Y,, sal cm be demabdW by the dalihrentia equation

dyqldtu -yq/49.ZT., V .+.. (6)

35V.. ) (ý D+WayV1/ (7)

L a h W Wlpbas mm) (8)

forl aISt N, 2 111N-1.
in MOg Pat limit. de outpuat cith Daumvn.V is done to 0 or 1, and die aningy iuzimcn defined by (4) wiLU be

nmunm esd (It cmu be Aa la munb.m) whan die ayusim i b ans. itoeandy utate
IV. Siwmlm gnaw eeb

with diLfmat kink cat magpamms. The -nods gSnd network sbewn ma Rpwa 3 we. ued fmr the first p"lo anulauam.
All line ware inmumad to be two-way bobk aod have die saime capeday. Under don saimputica die capenty Dafltu C as



symmo We elm -sune doa the ma" link am w 4 a ova"e pvapmwuAak to th link capaciy c because we do not

have any hnsoeirw about th UM no (fefi f when we firs -'i the algsothos So. the am manu W Lz aimo

%) -,a d dll IIW. have the mas aM The diagonal deasaw of W, whichb correpond topseudo links ame All Mo. and a
Lorp number is asigned so the aloo w"ahaupn to o*pan lW&s The come maou used in the pilot siuouanam

VvesanTable &

1 1 2 34 5 6 7 8 9

4 1 2 30 20 0 20 70 8 20 2
51 20 2 20 2 20 20 20 20 20
6 1 20 20 2 20 2 20 20 20 20
7 20 2 0 202 20 20 20 20 20
4 20 20 20 20 20 20 2 20 20

9 1 20 20 20 20 20 2 20 2 0

In the pilot simulations only -n 00-pair was conidered for the jpvu coom mania For each 1Pvn 00 pasr, the firt:
sand the lost cohns in the nsiuan army an Aned. The stone of the rest N04J-2 (a 63 in the 9-node network) ia~ve now".
are updated woordift to thesteady state ampema. of Iquoel.. (6) and M7. The in"a yalut of the output of ends actve
norna a. m andam number uniiaemly distributed in (0, 2/NI such tha

E({ZZV..}.N (9)
Ii

We start the network with low gam, La.. the dlope of the hyperbolic tangen curve in Equation (7) aisemagl (y 0
legs). This chaic wotuhd allow the system to Aind befter =uam ado the ansrgy susf ee. After 100 iteraftonw we start
slowy uicresaf th pas (deatenan y0) unti the syssam convorgas ead the values of V 4are near 0ocr 1. The result for

the "and* p41tstudeay were bodaied with the failownig paessmater
A a 20,3 8 Cu 500. a a 9.5, 9 a I

YO 230 W"i~L. yo = 20 Woonl)

The aigann. st Nansibve to those persnun slc a bed aperecig pomin may reult int dtvergwAn (oscilation).
Table 4 Ah~owute *aaothes path knasd by the elganditm %at&ean node I and node 9; (a) is the '-do'i condition. (b) is

the resul after 100 lirtiamam and (c) the ran* after 200 itmieroo (Biad moault). Theo shortest path found as 1-1-2-2-2-
2-56-&9, whics can be' - , a 1-2-5.4-. Table 5py .ms nao reults far a doersan 00 pai.

Decoum of the symbefy of the Vida nmwmvok, the diactam path is not anqufe for smeni 00 pairs. which makee the
j wamo- difficult Mte alpedm will find one of the stohest -od dhpanin an the Inina conditions. In the

simulation. we ales noticd that if the pa is fined at a Wogwe value right farom the bepaning the system as very eay to
Soetmuck at some local mnam By MAmUg at low pm and slowly increasng at. we have so for, been able to reach the
&W ounumim on Al eCOOpesta bide ht the pilot 9-node Sid networ.

In praedcm. the link com w 4 n a cmmunicaban network depende on the actual traffic going throulm that lW&k To

obtain the actal traffic distribution for the mahmn netwo the &algmitm should be repeated for every 00 parn (there are
Nx(N-1) of thens). After the actual irF"i canditiss in the network beams avaiable, the cal mnama W can be updated by
usmin equadons (1.) and (1.2). The algarithut in than repeated for each CID pair api and the apumal path Ls found for
eadi 00panthat will pievit same links bomnbeamingtoo crowded. Dy aso roeatng thealgmttlon thes ANN could wumraialiy
*obun the opumel flow distribution for the network in the msem that the eupected delay on the sanbr network as nautnuzed
forea pvai so of link apenti. 1Thi approach was usned to obtain &honest pads. far multiple OD pairs in a 9- and 16-node
networks.

After the pilo simulation was miccmanfullyacmpleated. the ANN algorith wee wood JA multil 00-par m both 9-amode
andl 16-nodoe geeIse In the 9-nod network, the algoridim wee tasted with four diffimat 00-pairs Each link wee assumed to
have normalized capaciy 0.3, wtbaea the flow on each 00-pa wan taken to be 0.l. The 'opUW* ath -we obtained
sequentially by presenting to the ANN one 00-pear at a time. The trnabal omadibons an A. B, C~ n, and t that were used in



the pticot antulation. wato &Ws used in these simulations. The anneslitg teirpersture schedule was slightyadv aifrena m~e
uzu"a tempipmenan was kept the same as yo (utal)D w 250. but the &Wna toparaure wa amt at v 0(final) x 30.70193 for a

male. Aim thes network converged to an "opaate path for a given 0-peakr the Link cost was updated according to Eq.

parasdiam asthame the oripat. while dhe second the destnationi. For each 00-pear. conivergence was eclueved after 200
atUSmots. an agreent w ith the pilot simulation. The initial and final neural activations for each 00-pea are shown in
Table 6. In this partciauularsawton.. the order that the 00-pears were prmesetd in the ANN wui ASCO and a usinge pasth was
assumed e a orr ald the raific for each 00 peat. The same uinutil coanditions tneural activation wis used for eacn, OD-
pair. The "opisnal' peath that was obmaned was A a 14.5-8), 8 a (2-54). C a (4-1-2), and D - (7-4-5-2-3). with total cam 4
16 6.3966. This path as not the overall opamal path which hass amr 15.4210 (ses TabW 7), but s Very lose 10 IL

In ordeor to dowituane the eaets of the sequnice as which she differaist 00-pears am prieiseted to the neural network.
all posiable permutatios an the socqusisc of the four 00-pears were prmiesne a"d t 'optimal' paths were recorded. Table 7
summauize the differant "optimal' paths sand, die frequeicy they occurred. Whan the same aunae conidiotios were used for each
003-paw. the sst of paths 1. with tool cost 1&6396&. very dam to the opanta ass of paths 10 with cowt 15.42510. was
obuaned ~667% of SMe bame- Whimte tSMuttai conditionss neiurak activatinse for escl 00-pear woe ctosen randoutly. the
freqsatcyo peth sot I dropped to 29.17%. However. the frequancy of SMe opatial padh aso 10 increased frMe 0.0%. thsat it was
wheathde same nabe condtdions wase uased. to 123M0. The effect of the imaa condidbtion is currently investigated. From
the revults bobtened so far, at appars Owthat different iznital conditions roult in a mome evan dastribution of the paut
asm among low cost path sea than the distributiun of the path ases obteaned with fixed initial condidtions. Table 8
suutmainzsishcorispondence between thesequaace with whuic the fosu0D-pearswerepreatlted to tho network and the path set
tiat the NN converged to under fixed initial cotdidbons and different atubal condabticis. The numbers of the path sees
correrposd to the path soet nusmbers of Table 7.

[Is order to determinae th stability of the 'optimal' path sets. two 00-peau were alternansigly presented to the NN and

SMe path "s wase recorded. The chsosens 00-pears wase A a (1.9) and B a (8,11. The link capacity was kept the same, a e.
0 5 untsm par l"k but die input date flow was raised to 0.25 data units. Strting with zer itutal neora activation.
fixed for each 00-peair the NN converged so a stable solutius in on*ieratiaon. Furthermore, at converped to SMe samse path
set. mrespecove of which 00-pear was prestited first (columns I and 2. Table 9). Whanthde initial neural activation were
random but fixed for eli 00-pewrs. SMe solmucin was stabilized art a lew iterations, columns 3 and 4 in Table 9. The same path
ases were obtained irreipective of what 00-pear was presented first. However, when different random initial activation Was
used each tibme a new 00-paw was preisened. SMe path ases stabilizd after a few presetations at slightly different set
paths. depaiding oan which 00-pear was presenited fist. In this particular experriment, all SMe different path set that were
obouried arm equaivalent from cost point of view.

To test the ability of the ANN to opamaze the noework performsance further by crating multi-path rouses for multiple
00 peairs. a cotriperenve, study was conducted by -llocating different paeratges on the total flow otn each path and repeating 0
SMe algorthdm by interleaving the daiffeatt 00 pears unilh the total trffic from all 00-peas was accommodated. The
siinulations were conducted using both SMe d"a link cost IEq. 0. 1)]1 as well as SMe ndesmatr delay link cost [ Eq. t 3) 1
For a sangle 00 peW but ddfferttF prce age of traffic allocation at each *shortest' path, SMe results for the two different
anst huiatcons applied to a 9-node network are summarized an Table 10 and Fig. 4. From these results. it cam. be seaw that
smaller isrennotaiaper iteratiotn result is lower total cost, art general. Furthermtore. die darwative delay cost f unction
(13) yieddS paths that slightly outperform those obtaited by the delay cam function (1.1) for most increments. However, the
dafiferanco ame not so sapdifiant. One advantage of SMe derivative delay cosn function is that die number of loops observed
is the -shortest' paths was elirmnated completely an the rnai casm. A small percentage of "shsortest paths. usually less than
5%. occasminally cositained loops whanthSM delay cost function was used instead. Th existence of loop, as currently under
insvestigaton.

An adenticl samulaotio to the onis deaisrbed an SMe prevous paragraph was conducted for three 00 pairs in a nine node
network. The results for SMe delay and derivative delay cost functions ame summarized an Figs 5 and 6 respectively. Similaar
coasclumouu to thsM sngle-th expariment can be drawn; lower inciev atas per itatbocit resgult iii lower total cost. The
derivative delay cos yields sigittly bitto esultsh thean SM delay cost function ismelf. Analytial statistics of the number
of times each path appeared as daliferatt ancrements of flow were used to obtain SMe shsortest paths as givent an Tables I1I and
12 for 100%. 25%. end 1% incaasaiu per iteration. The amount of flow each path cam"u is also shown on SMe tables. As at

is seat. most of SMe traW flow as concentrated an a few *good' paths as SMe size of flow incrmtent deaeasms. Furthermore.
the derivative delay cost yields a slightly lowar fanal cost (delay) than the delay cost.

The NN routing algorithm was also tsated an a 16-node square grid ne twork with lan capacity 0.5 wuls, the same as in
the 9-node network. Four 00-pears wase used to testtSM NN. The test 00-pears were A a (1,S), B - (2,12), C z (14.4), D
(1.13). Whanthde 00-pears wase presetned to the NN in the ABCD sequence, the optimal path set was obtained after 200
iteastions for each 013-pear. Table 13. The same annealing schedule as an the 9-node cass was used. Nose that the path set an
Table 13 is globely optomal. Due to spae limitations, initial condittions, intermediate reisut alter 100 aterations. and
final retals after 20D ateratiotts ame only given for 00-pea 4. For the other three 00-pears only cumulative, fana rwtslt
use given. The senstivity of SMe solution to SMe order at which the different 00-pewrs are piesased in SMe NN is veang
invesupted. Furthermore. SMe appearance of paths that contain closed loops which seo= to appear whent the cost of looping is
low and SMe path of SMe inatially pritemied OD peair splits the network graphi into two separate SiibSaphss. as also being
investigated& Additional details on SMe simulation results oin a I6-node network can be found in 181.

V. Conclusions
In this paper, a neuralobas"e. computational algorithmn has bean developed for solving optimal traffic routing problemsi

an communicationt networks. The key idea in this algorithm is the inuroduction of pseudo links which allow the extension of
any path to a length N path a.that it can be represented by an NxN neuron ariy. The proposed NN algorithm can be used to
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ABSTRACT

A nonlinear adaptive detector/esimator is introduced for single and multiple sensor data processing. The problem of
target detection from returns of momostatic sensor(s) is formulated as a nonlinear joint detection/estimation (J DE)
problem on the unknown parameters in the signal return. The unknown parameters involve the presence of the
target, its range, and azimuth. The problems of detecting the target and estimating its parameters are considered
jointly. A bank of spatially and temporally localized nonlinear filters is used to estimate the a posteriori likelihood
of the existence of the target in a given space-time resolution cell. Within a given cell, the localized filters are used
to produce refined spatial estimates of the target parameters. A decision logic is used to decide on the existence of a
target within any given resolution cell based on the a posterion estimates reduced from the likelihood functions. The
inherent spatial and temporal referencing in this approach is used for automatic referencing required when multiple
sensor data is fused together.

1. RANGE ESTIMATION FROM COLOCATED SENSORS

This section considers the problem of localizing a target in range space from data received at one or more colocated
sensor(s). The range-Doppler space is partitioned into a number of resolution cells. Each cell is identified with a
hypothesis that the signal is present in it. A JDE scheme is then used to localize the target and refine its parameter
estimates. The measurements that are used to localize the target consist of signal returns corrupted by additive
white Gaussian and non-Gausuian noise.

The problem is formulated using the JDE procedure adapted to problems with uncertain initial conditions-4.
The approach involves the operation of several nonlinear independent filters in parallel. In the case of Gaussian
measurement r-)ise the extended Kalman filter (EKF) is used for estimation. An extended high order filter (EHOF)35,
is used in non-Gaussian noise. The parallel filters are distinguished by the initial conditions used to set up the problem.
Along with the state estimate the a posteriori probability of each hypothesis is computed recursively.

1.1 Problem Statement

Consider the problem of signal detection and parameter estimation in the context of the reception of an active echo
return from a object that has been illuminated by a monestatic source. The situation is considered in which there are
P collocated sources that illuminate the target simultaneously, but with different carrier frequencies designated -_,

The received signal at each sensor is frequency-translated by mixing it with a signal at frequency wt. The resulting
signal is low-pas filtered, and digitized at a rate f,, which is at least twice the highest frequency in the data. The
time between samples is denoted t.. It is assumed that all sensors have the same digitization rate, and that all
clocks are synchronized. The general expression for the received signal at the p'h sensor , under the signal-present
assumption, can be written

SP ., = 1,9(5)pSina(•.P,)roesn,es on) + Tre R o 9 )
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where .,,(rt) is the received signal amplitude, p, (rtha) is the puls shaping function, and S
p(rt.(=. co [(Y(u(w,. (kt. - rt))) - wpo 9.1 (2)

Vph is white noise with E[v,,J I. 0, Efvp,]tsj = e,,6(k -j), and r- is the time delay between signal transmisiona
and reception. r is a function of the mamp D& between the receiver and the object, and is given by

2D5
rt = 2D (3)

c
For unambiguous range estimation the uncertainty in m., denoted Art is bounded by ArT :5 2W/(&V.WP). This is
due to the fact that the cm(.) function is not monotonic (i.e. r,(if r2 - rl = 2(r/(L),ci-)))
p,,(rb, &,) is the pulse shaping function, which has average energy .

1.2 Joint Dtection/Estimation

In this section we describe the JDE procedure for optimal estimation of time delay and Doppler shift assuming the 1t
presence of the target has been detected. The range of uncertainty in delay and Doppler is partitioned into a finite
number of resolution cells. Each cell is aociated with a hypothesis 0j. The hypotheses are distinguished from
each other by the initial conditions oan the initial state estimates, ielo., ,and initial state covariances P010.. The
measurement and proem models ane the same for each hypothesis. Let& E O designate the parameter vector that
describes the different initial conditions on the states. The parameter vector 0i is also asumed to be time invariant.
Uder hypothesis Ho, the discrete time measurements are modeled according to

H oi : st, =gi,(x i,)+ v h 4with i.c.'s 4feoe,,, Po,.d (4)

The measurement vector sat is composed of the scalar measurements of the P individual sensors such that 0 *
st = [1z: Z2k "'" 8p 1J (5)

The state x, is common for all A C 8, and satisfies the discrete time procm equation

X6= f(xh-0) + w1,-1 (6)
The initial state estimate, the measurement noise, and the proces noise e uncorrelated. The procem and measure-
ment noise are sero mean and distributed with covariances E[wsw1T = OQ, and E[vsvf]= :R.

For each 6i C e (each assumed model), a minimum variance estimate of the model parameters is obtained recursively
using the JDE technique. Using this technique a minimum variance estimate of the model parameters is obtained
for every amumed model. Thee estimates are subsequently used to estimate the likelihood of each model being the
correct one. Baed on these likelihood estimates, a maximum a pwoteriori (MAP) decision criteria or a minimum
mean squared error (MMSE) decision criteria can be used to select the proper model.

From Bayes' rule, the a posteriori probability of the parameter vector 0 is updated recursively by'--'

P(O, IZO) = P(UmiZ.-0)p(suiZ&-.,Gu,) (7)

where Z&_1 = {ti,z2, .. z -. The initial condition for (7) is the a priori probability density function p(9)
p(OIZo), which is assumed to be known. The densities p(siZs..a,9,) are updated using the EKFs for estimation in
Gaussian noise, or the EHOF-1s for estimation in non-Gasmian noise. Since the state vector xt is common to all
models, the minimum mean squared error (MMSE) estimate can be used. The MMSE estimate is expressed as a
weighted average of the conditional state wetmates *j&t,#, over all 9, as follows:

*;= 1 P(E , Zs)i,. 4 ,. (8)
imi
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Model (4) can be wexteded to include the eigaal-abumat cane (null hypothesis) by augmenting the set of hypotheses 5
{0j) with the null hypothessis fe which has the semaciated uoiss-oaly meaasuremet model

a&= V6, (9)
and renormalimation of the a priori distribution P(0,, i = 0, 1, -. M, where M is the number of resolution cells.

1.3 Speicification of Initial Conditions

The localized initial conditions for each resolution cell are defined as follows: Lat the time delay have mean io and
density function pN(r). The distribution of ro is segmented into N nonoverlapping segments such that the segment
around some localized initial estimate #-.0 is defined by

p~r) p,.(r) a.< oS*+ : in <-N (10)
We have

N. pv, 0,(r)d?= N,(r)dr = I

Define the scaling parameters C., such that

Then the mean and variance of the initial conditions of the segmented model are given by

#'0= ET] r'p,. , ( r)dr-

With N different initial conditions on ro there are N different resolution cells for referencing the measurements. A
different filter is initialisedl in each resolution cell. The total number of cells in the resolution space can be large,
depending on the desired accuracy in the parameter resolution. However, the fillers can be run in parallel, and
independent of each other, thus reducing the execution time to that of a single filter.

The parameter vector 0j, 1 < i S N, is definedi to be the i'" resolution cell and is used to define N initial conditions
on the state variables r. The a priori probabilities of each hypothesis are determined by integrating the density
function p?0(m) and over the limits defined for each hypothesis. They are given by

PRO. = +1 p,,0 (r)dr 011)

1.4 Joint Detection/Estimationaao Tam. Delay

This section addressets the model in which the state x& rh, is unknown and to be estimated. The parameter vector
9, is defined as before. Hypothesis Hi is now given by

Hi :Zr,= { u,J(a)+v& -:k, f&t (12)

Vh ~kt, > fh t
with initial conditions ~=tn]

.*010,,i [ .O]T(13)
P =oe [vafrir-j



where GP(a) a,(#b)Fppb(00% 06f) (14)

= 0.5 (1 - cos(2v iusG(k t. - #h)/t.)) (5

'p(, 1(~.0~~) -cos [QY.O(wui. (kht. - fh))) - w4 kht.j

where it is obeerved that the amplitude function a,,(.) reflects the transmitted amplitude A attenuated by sperical
spreading lowe.

1.5 Experimetal Evaluation

Both single and double sensor models (P = 1, and P = 2) in (5) were selected for experimental evaluation. For

this evaluation the sampling frequency was f, = 100 x 1V as, the pulse width was set to 1219. and c, the speed of

propagation, wus 186000 misles/sc. For all tests, the nominal time delay and Doppler were iraon =0.000324 and

("orn - 1) =8.96 x 10-' respectively, corresponding to a target at a nominal ranw of 10 Milka. traveling at 300
mph Doppler velocity.

It was assumed that the error in the time delay estimate was -'niformly distrbuted at *3.5t. about the nominal
delay. The corresponding variance is then (7t.)1/12. The eirror -. the Doppler estimate was assumed to be uniformly
distributed at *7.47 x 10-7 ahout the nominal Dcppler. This corresponds to an errocr in tbe Doppler velocity of
*250 mph. The corresponding variance is 1.65 x 1-3

1.5.1 Single Sensor Evialuation

The single sensor model was used to compare the us of multiple filters (N =m 7) to asingle filter (N = 1) for
JDE. With only one filter, ioot = #noin, Pols,#, (7t,)3/12, as described previously. The initial estimates of

time delay for the multiple fiter implementation are given by #aI (a -4) * 9, + room, n = 1, 2, ... 7. Thus,

the initial delay estimates were separated by t., with Var(r,.) is t./12, Va. The a priori probabilities are given by
P(GftIZO) =1/N, 1 :5 n < N.

shown in Figure 1(a). In this figure the mean equared erro (USE) of the estimation error in mk is shown as a
function of SNR, where SNK. a0o(.u) for ib :5kt, < m +to., and X, is the average received signal energy..,
per sample. Each point on the graph represents the results of 500 simulation runs. Both the MAP and MMSE
estimates are shown in Figure I(&). The MAP and MUSE estimates wre the same for N = 1. Also shown on this
graph are the results for the detection-only (D-0) technique, which is implemenuad by fixing the estimates at their
initial values. The noise is Gaussian, and the EKF is used to perform, estimation in the JDE method. The iDE
(N = 7) implementation gives better results than the D-0 method, particularly at higher SNR. This is expected
since the filter in the JDE method allows a considerable refinement estimates at higher SNR. as compared to low

SNR where the larger noise covariance restricts the Ailter gain. At -5 d~l SNR the JDE and D-0 implementations
perform identically. In general, the MMSE estimates are better thant the MAP estimate., particularly at low SN Rs.

The JDE (N = 1) implementation gives the worst overall performance. The filter used in this implementation often
converges to poor final estimates due to the tendency, mentioned prievio'isly, of time delay to converge to values that
are separated from the actual time delay by multiples of *1/f.,

The JDE (N = 7) technique is evailuated in lognormal noise in Figure 1(b) for the single sensor model. The MNISE
estimates of rk are shown in this figure for the EKF and for the EROF. The EKF is evah-,ated in two configurations.
In the first configuration, the Gaussian pdf is used to evaluate the detection statistic &.vC1 by equation (7). In the

second configuration, the lognormal pdf is used. The EHOF is evaluated using the logno~mal pdf only. The EKF

in the second configuration and the EHOF give very similar results at low SNR.. However, at high SNR the EHOF
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outperforms the EKF. When the Gaussian pdf is used in conjunction with the EKF to localize the target, the results
are significantly worse than when tha proper lognormal pdf is used. This advantage is particularly evident at low
SNR's.

1.5.2 Double Sensor Evaluation

In the multiple sensor case (P> 1), the sensors may have different carrier frequencies (wp,), and different translation
frequencies (wp,). A two-sansor (P = 2) model was evaluated in which w.1 = 2w * l0 x 10', w. 2 = 2r * 30 x 101, and
Wi= W13 = 0. The MMSE results of this evaluation for JDE (N = 7) are given in Figure 1(c). The single-sensor
(P = 1) MMSE results are also shown in this figure. This figure illustrate, the distinct advantage of centralized
fusion for JDE.

1.5.3 Multiple Pul. Processing

The results of processing two pulses are given in Figure 1(d). The EKF and EHOF are configured such that the
initial error covariance is reet at the beginning of each pulse. The rationale for this is to re-excite the system. This
helps to allow poor estimates to possibly converge to smaller errors, and it has been shown experimentally3, that it
does not significantly effect those estimatas that have already converged close to the actual state value. Figure I(d)
shows an improvement of about 3 dB for the two pulse estimate over the single pulse estimate.

2. RANGE AND AZIMUTH ESTIMATION FROM NONCOLOCATED SENSORS

Consider the situation of two spatially separated sensors, al &ad #2. Each of the two sensors attempts to detect and
track objects coming into its respective area of covertge. The coverage of the two sensors is assumed to overlap in *
space, but not entirely. The sunr geometry is shown in Figure 2. In the overlap region the data received by the two
sensors can be combined to get a more accurate estimate of target parameters or to estimate parameters that cannot
be estimated with one sensor alone. In the overlap region the estimates from the individual sensors are combined to
form improved target parameter estimates. We consider the case where each of the sensors may have different types
of tracking device such as optical trackers, various types of radars, etc. It is assumed that these sensors transmit a
signal and process the echo returned from that signal. The signals e corrupted by additive Gaussian noise due to
thermal effects within the receiver, and by clutter which may be due to non-Gausian distortion such as sea clutter
or other multipath spreading. Typical distributions used to model this distortion include the Rayleigh, Weibull or
lognormal distributions?. The thermal r-)ie at the receiver in assumed to be uncorrelated from sensor to sensor.

2.6 System Model

Assume that each sensor consists of a phased array or some other sensing device that can produce target angle esti-
mates along with estimates of tfim delay and Doppler shift. It is assumed that there are two separate measurements
taken at each sensor - one measurement at each of the offset phase centers. The received signal at the p" sensor
may be descriled by

ZVI, ` 5k+ up),+ "PI (16)
where p,, represents the received signal, u,, is the clutter, and vph is the Gaussian noise at the k"' sampling interval.
Since there are two measurements observed at each sensor, the received signal can be more explicitly expressed as

[ZI 1 9i~ 1 ~ 1+ tI~h 1(17)
Z,2:: I =[ gP, J I +[up,: IJ I VP':

Two unknown delays, ',• and r.3, are introduced in the received signal g,•. The delay r'l is the round-trip
propagation time from the center of the sensor to the target and back to the sensor. Referring to Figure 3, this is
the time for the signal to travel from point Pp to 0 and back to point P.. From r,• the range to the target can be

- |mm mmmm m• •woam- • al • m• |m mmsdlmm~mmm•mnm mwmS
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determined using the relationship 7,,

2c (8

where c is the speed of propagation. The delay r.3 is the diderence in time for the signal to reach from point P,"
to point P,3 . The difference in the propagation distance is given by • rp. The differential angle A#P to the target
from sensor p, which represents the difference between the seur pointing angle #Vo and the actual target angle 0,
is then

4 (19)

where d, is the distance between the two offset phase centers in the phased array for sensor p.

2.6.1 Single Observer Model

Using estimate of r., and rp3 from one sensor the target position can be estimated through the relations (18, and

19). Define the state variable vector for sensor p as = lTPI, ?'sI. It is asumed that the state does not change
while the pulse is being reflected from it. Therefore the process dynamics are sero; that is, the state transition matrix
is unity and there is no process noise. In terms of the state variables the received signal at the p"h sensor is

1 9p, J ap•,(xk)p 1 (xzk)rpI,(zr) (20)
= [g 261  1a,2,(x,~ )p,2,(zk~)r,s3 (z,. )

where
4A

, (c(z ,1 (1) - xi, &(2)/2)) 3 (21

p,, (x,) = 0.5. (I - cos(2zv,(kt. - z, 1(1)+ s, 1 (2)12)It.,)) (21) '

r, = cos(v,(w,(kt. - zp(1) + .izpk(2)/2)))

for j - 1,2. xi = +I whenever j = 1. xj = -I whenever j = 2. vp is the doppler velocity (assumed known in this
case), A is the transmitted amplitude, and aj,,(.) reflects attenuation due to spherical spreading lows. The definition
of pv , (.) given above represents the Hanning pulse type with pulse width t up. The EKF equations for the constant
state model given above are given by

K,1 = P,1  +

Pp,,. = (I. - KpG, 5 )Pp._t1 1 5  (22)
Xlii =: iXh-tl-.- + Kpi 1,

ills = apt, - £Pk 01lh -0

where R4) is the measurement covariance, Kp, is the filter gain, and Gpk is the Jacobian of the measurement
model3". The EHOF incorporates 34 and 465 order estimation error and measurement error moments. However,
the equations are very lengthy and are not presented here.

2.6.2 Double Observer Model

When information is available from two sensors, that is, whenever the target is in the overlap region, and the target
is illuminated simultaneously by the two radars, the Doppler and time delay estimates from each sensor can be
combined to obtain a better estimate of target position and velocity.

Let X' and Y' denote the directions of a local coordinate system as shown in the insert in Figure 2. Let 0i, and
020, the pointing angles of the two sensors, be chosen such that #30 - =10 = 90deg. In this case the direction X'
points directly along the line of sight (LOS) of s2, and perpendicular to the LOS of &I. Likewise, Y' points directly

0 0 0 S S 0 • 0 *



along the LOS of sad perpedicular to the LOS of e. X' is the i-track direction for s, and the crous-track
direction for s-. Y' is it in-track direction for s2 and the cros-track direction for es. For small angles A#. such that
sin(A¢• s 0), the position estimates in the X', Y' coordinate system, which can be found from either sensor, are
g i v e n b y . - c

0,,3 = -(c1 /2 -- o) 
(23)

,= = (c+11/2 - D1o)
6113 = D2.02/d3

where Dp0 is the nominal range from sensor p to the center of the insert in Figure 2. The associated position error
variances are given by

=1 D?0c2Var{13t/d?
r1 =c Var[,' 1 ]/4

= c2Var~ilj]/4 (24)
6;1

01= D.2c 2 VarfrnI/4

If it is assumed that the time delay estimation errors have Gaussian distributions, then the maximum likelihood
estimates of the target position in the overlap region D2, which are the weighted sums of the estimates at each
sensor, are given by

6 ,, 2i / (25)

a'(011/2 - D10) + •1,, =V2 I (26)
'i Y'2

2.7 Joint Detection/Estimation

The target search region has been localised to the rectangular box shown in Figure 2. This box is subdivided into
several resolution cells as shown in this figure. The beam pattern from sensor si allows this sensor to detect a target
and estimate its parameters if the target is located in resolution cells I through 21. Sensor e2 can detect the target
if it is in cells 11 through 15, 22 through 25, or 28 through 31. I the target is not located in any of these cells
then the target is declared not present (or more precisely, not detectable) . This situation is represented by the null
hypothesis Ho. The resolution cells ae grouped into regions which will be used for minimum mean squared error
estimation. If the target is located in regions R1 (resolution cells I through 9) or R3 (resolution cells 16 through 21)
only sensor st can detect the target. Regions R4 (resolution cells 22 through 25) and R4 (resolution cells 26 through
31) correspond to the coverage area of sensor #2 only. If the target is located in region R2 (resolution cells 10 through
15) both sensors can detect the target and perform parameter estimation. The remaining area in the rectangle in
Figure 2is designated as region Re, where neither sensor can detect the target.

Let 8i e e'designate the parameter vector that describes the different combination of model uncertainty and initial
condition uncertainty. The parameter vector 8j is assumed to be time invariant. The parameter vector 9,, I < i < 56
is defined to be the jiA resolution cell and is used to define 56 different combinations initial conditions and models.
corresponds to the range resolution cell number determined from the initial conditions on the two time delays from
each sensor.

In general, hypothesis H,, representing the hypothesis that the target is located in resolution cell i, is defined by

Hi s = Sib + U(7 + V)1
22& = 92A+ ' + V2)

|I
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where ui, and vj,, j 1, 2, represent the nio*-Gausiani and Gamma.m wsoe, respectively, present at the p'5 sesr

In regions R1, R2 , and RG, where senor *1 can detect the target, the component #I.,, is defined by (20) as

I(4. = m(28)

In the regions Ro, R4 and Rg,.. :0, V k, m = 1, 2. The delay p., is given by

where x. = +1 whenever m = 1, and . . -1 whenever m va 2. In regions R2 , R4 , and R4, where sensor s2 can
detect the target, the component t3.1, is defined by (20) as

" "0-= { 42 -6()Pf() () : < t. < h.,,+ 9h r (30)

In the regions Ro, R, and R3, p2,,b =0, V k, m = 1, 2.

The initial conditions are given by

-41 
(31) 

* 1 1

p'o,'e = Diag [vat,,,o).,vaso],] (31)

The initial estimates #p %,op = 1,2 are chosen such that the position of the target for a signal received ate
sensor p is at the center of resolution cell i. The variances Varj*#po,) and Var[•po are determined based on a
uniform distribution of the error within the cell.d e

Define Z& = [sl, z .. s,where s, = aS., 17 a the set of all measurements Up to time ks am d let p(alZZ- 1, 8i)
be the probability density function of si given the measurements Zh_ 1 and hypothesis H.. The a posteriori probability
of hypothesis Hi is given by

P040 P(OiZ1,- 1 ) Ads,) (32)r.,1,) " P(O.1Z&, ) A.(s,)

where A,(s 5 ) is the likelihood ratio defined by

At(zs) = (33)

The minimum mean squared error estimate can he found he combining the estimates from aln of the cells with a
particular region. If the state vector xI is common to all models the minimum mean squared error (MMSE) estimate
can be used. The MMSE estimate for sensor p in region R, can be expressed by

F, P(0,lZ,)•, 1,.,,. (34)

The most likely region is selected using the MAP criterion. Define a the hypothesis that the target is located in
region R, as I, r = 0, 1, ... , 5. The a poteriori probability associated with region R, is the sum of the a posteriori
probabilities of all of the cells in that region. This region-level probability is given by

P(IV IZ) E P(9,lZO) (35)
ceilifa

The most likely region is chosen according to

Choose I, :r = argmax,=o...,| 1 e P(IIZ&) (36)

.S
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2.7.1 Definition of Prices

The a priori probabiiti.e of each bypotheis ae based on the amra coverage of the sensors. The total number of
resolution cells shows in Figure 2 is 56. Of these, 25 ae located in region R.o. All cells we assumed to have equal it'
probability of containing the target. The a priori probabiliies re given by P(Oo) = 25/56, P(O,) = 1/56, i =
1,2, ... 31. The probailities asmociated with regionse , , = 0,1,.-., 5 aw given by P(Jo) = 25/56, P(Ih) =
9/56, P(12 ) = 5/56, P(1a) = 6/56, P(14) = 4/56, P(Is) = 6/56.

3.6 Simulationa impine 0

An experimental study was conducted to enluate the performance of the multi-seesor fusion technique. In this
evaluation the memurement noise consisted of 50% Lognormal Noise and 50% Gaussian noise. The nominal angles
from sensors #I and " to the target were 10 = 45 dg and *% = 135 dog, respectively. The nominal range from
st to the target was D, = 10 miles. The nominal range from smnsor s2 to the target D2 was chosen such that the
received signal at # was 5 dB higher than at .s for the same transmitted signal level and target strength.

The carrier frequencies used by the two sensors were the same at I. = 10 x 106. Both sensors sample the signal
at a rate f, = 100 x 104, and both signas have the same pulse width t.,, = 12/f., p = 1,2. The resolution cell
width is 1/f,. seconds. The msociatd initial error variance on time delays ian and '•jo is t2/12. The corresponding
range resolution cell width is Arp a c/(2lf.). Thus, the initial variance for the angle-meas.urement delays is (19)
Var[h 3] = ((4e)/(2f.D,))'/12, p = 1,2. 14, the separatin between phase centers at the seor was chosen to be 3
feet for each smuar. Simulations woe performed for SNR's (at sensor *I) ranging from -10dB to 1OdB. 500 random
target positions were chosen at each SNR. Of these 500 trials, 228 targu positions randomly chosen in region RO, 91
in R1 , 54 in RA, 44 in R3, 40 in R4, and 40 in Re. The results given hee as for monopuhe procesing(i.e. one pulse
repetition interval (PRI)).

The probabilities of mimed detection P(IoIl,) and correct classification (i.e. not only detection of the target but O
correct localization at the region level) P(1I,1,) , 1,- ,...,5 are displayed in Table 1. The probability of mis-
classification, which is not shown in this table, is given by P(I41) = I - P(1,11,) - P(IoIl,), q 0 r. Sensor 82
outperforms sensor it, which is to be expected since the SNR at st is 5 dB hig-her than the SNR at sensor S2. In
the overlap region, R2 , the classification performance is better than in any other region, with an 85% probability of
correct classification at -10 dB SNR. Additional numerical results have been jenersaed3 's with complete probability
of detection (PD) and probability of false alarm (PFA). What appears as a discrepancy in P(1It,) at -5 dB SNR
for r = 2,3,4 is due to statistical error due to small sample size.

Table 1. Probabilities of Mised Detection and Correct Classification - Region Level

SNR(dB) Probability
__: =1 Ir 2 r=3 r=4 r=5 S

-10 P(Jol,) 0.35 0.074 0.50 0.15 0.16
P(I,4I,) 0.57 0.85 0.45 0.78 0.79

-5 P(161,.) 0.13 0.019 0.23 0.025 0.023
I P(I,11,) 0.87 0.96 0.77 0.98 0.98

0 P(lo Il,) 0.02 0.0 0.02 0.0 0.0
P(1,11,) 0.9s 1.0 o.9s 1.0 1.0

5 P(Io8I1) 0.0 0.0 0.0 0.0 0.0
PU(jI1) 1.0 1.0 1.0 1.0 1.0

10 P(Io0l,) 0.0 0.0 0.0 0.0 0.0
P(0Z,) 1.0 1.0 1.0 1.0 i.o



The estimation results me shown in Figure 4. All results shown in this figure are in reference to the (X', Y')
coordinate system. Figure 4(a) shows the average mean equated error for thae dettions in regions R, and R3, in
which only st has coverage. Figure 4(c) shows similar remults for regions R4 and Rs, which we covered by sensor sj.
Figure 4(c) also illustrates the 5 dB rerformance for sensor s2 over that for at. Figure 4(b) shows the results for both
sensors in region R2 . In this region, as shown in Table 3 the proper cell is almost always found. Thus the crosm-range
estimation error variance should improve by about 6 dB (20log(2)) for sensor sj, airce the cros-range error for s2
has been localized 'rom 2 cells down to 1. Similarly, the cross-range error variance for sensor s in Region R 2 is
reduced by about 10 dB (20log(3)) since the target has been localized from 3 cells down to 1. This improvement is
evident in Figure 4(b). Figure 4(d) shows the estimation results using the combined measurents obtained from (25,
26). Because of the larger variance in the crom-range error for each sensor and the fact that the intersection of the
LOS's between the two sensors ane perpendicular, the combined estimate consists of the X' estimate from sensor s2
and the Y' estimate from sensor &I.

3. CONCLUSION

A model-based adaptive detection/estimation approach has been presented for multi-sensor fusion. It is shown that
excellent performance can be obtained for both target detection and target parameter estimation using this technique.
A significant advantage of this technique is that each sensor can perform detection and parameter estimation in a
decentralized mode. The final estimates and a posteriori probabilities from each sensor are processed by a centralized
processor to derive the optimum estimate. The method provides an automatic referencing mechanism of the data
from the different sensors (automatic data alignment) as long as the geometry and timing of the sweeping beams are
known. For optimal target resolution performance, it is found that the lines of sight of the two sensors should be
perpendicular to each other at any given time, requiring special synchronisation.
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ABSTRACT

Two different types of adaptive networks are cmsidered for solving the cenralized and distributed hy-
pothesis testing problem. The performance of the two different types of networks is compared under different
perfoumance indices and training rules. It is shown that training rules based on the Neyman-Pearson criterion
outperform error based training rules. Simulations are provided for data that are linearly and nonlinearly
separable.

I. INTRODUCTION

The optimum Bayesian and Newman-Pearson solution to the distributed decision fusion problem bears
striking similarities to the structure of a neural network (NN), !28.291. Moreover. NNs can. in principle learn
arbitrary input-output mappings, provided that they are sufciently smooth. These two facts motivate the
use of NNs for solving the centralized and distributed hypothesis testing problem. In selecting the proper
NN layout, one could argue that a perceptron-type NN can learn any input-output mapping, thus it can be
trained to solve the hypothesis testing problem. However, the ability of a perceptron-type NN to learn an
arbitrary I/0 mapping critically depends on the number of layers, the number of neurons per laver, and their
interconnections which cannot, in general. be determined a priori.

In order to conduct a comprehensive study of the ability of adaptive networks to solve the centralized
and distributed hypothesis testing (CHT and DHT) problem. two different types of adaptive networks are
considered: structured adaptive networks (SANs) and perceptron-type neuron networks (PTNNs). By SAN
we mean a network whose inputs are functionally related to the data through known functional transforma-
tions. and the outputs are parametrically dependent on the input. By PTNN we mean a multi-layered NN.'
that consists of neurons in the classical sense. interconnected through synaptic weights.

The selected networks are trained using error based and Neyman-Pearson based indices of performance
(IPs). The training rules are derived as gradient rules on the selected IPs. Simulations are conducted with
linearly and nonlineariy separable Gaussian data.

II. Cantralized Bayesian Hypothesis Testing (CBHT)

Assuming N statistically independent data sources, the optimal Bayesian or Neyman-Pearson (N-P)
CBHT is the Likelihood Ratio Test (LIT)

A(r) = A(rl,..., r' ) = dP(,Ho) '
tIl dP Ho)

where r, designates the data from the i-th sensor, H, is the i-th hypothesis, i = 0, 1. The threshold T,. for
the Bayesian processor in determined by

Po(C10 - Coo) .r.2,

= PI(Col - C11)
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whuenPo,PA = I-PAnan the prion on the two hypotheses and C,, ithe cost of deding infavor ofhypothesis
E, wken the true hypothesis is H,,sij = 0. 1. For the N- P solution, the threshold Tf is determined by the9
false alarm requirement at the fusion according to

dP(Amjo S

where Go is the desired aggregate probability of false alarm (PFA) at the fusion. Notice that the Bavesiazt
processor requires the knowledge of the priors (PO, PI) whic~h may not be obJectiveiv availa~ble. The N.?
processor circumvents this requirement by constraining the PFA and urwmiu;ing the probability of detection
(PD). Also notice that both processors are parametric.

M. Distributed Binary Hypothesis Testing (DBET)

Asunming that each sensor makes binary or multi-level independent decisions u,, =.'N, the optimnal*
Bayesia or N-P DBHT solution under statistical independence consists of multilevel likelihood ratio auant.
uszers (LRQs) :12.181 at each sensor and an LRI at the fusion. For binary LRQ at each sensor '4 to 19 and
22 to 31*1 with

f +1, if the i-tb local decision favors hypothesis HI;(11)
u I- 1, if the i-th local decision favors hypothesis Bo

for the i-th sensor, the optimal Bayesian or N-P DBHT takes on the form

N M,

$=In HO

where
1 __ _ PD(1-P. PD. (1 -PD.) (I3

P~i G- PDJ2 P/i(1- PF,)

The threshold t! for the Baveuian DEBT is determined by an expression similar to (11.2) that depends on the
priors (Po, A1 ). For the N-P DBHT the threshold tf is determined by the PFA requirement. equation (11.3).
it is interesting to notice that (m.L2) can be written as

H,
- U 0-(to1>4)

where

to = -tf - t,(1.5

The form of (M1.4) is reminiscent of a NNI, figures 1 and 2, 't2S.291-

MV Centralized Hypothesis Testing and Distributed Decision
Fusion with Structured Adaptive Networks (SANs)

A. Centralized Binary Hypothesis Testing with SANs
As discussed in Section IL, the optimal decision test for a binary hypothesis problem is a likelihood ratio

test (LRT) of the form

A()=p(rIH1 ) ), (V1
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where p(.IHi) is the conditional probability .ensitv function (pdf) of the data conditioned on H, (i=0.1I and
q(> 0) is a threshold. For Gaassiaaa problems, iniA(r)J has a simpler form and can be used in lieu of (,.%1)
in the equivalent log-Lo.T M

,nfA(,); = d[niH.j ,< > - (-r.2) .
H0

For example, if the problem is of the form

N (m ,, :2 H (

"{ N('(o,a,) :Ho

where N(mi 2) indicates a Gaussian pdf with mean m and variance C2 , then the log-LRT test from (IV.2)

1(. - I r2 -. 2 r ,- > - -' ', '4
H0

where 1(r) is the sufficient statistic for the problem (I'V.3). The previous example serves as motivation for the
structure of the network that is discussed in the following section.

1. Network Structure
The structure of the network is shown in Fig. 3. The functions O, are chosen to reflect any a priori

knowledge about the problem. In the Gaussian problem for example, in view of (IV.4), it is natural to take

*,(z) =z', = 0,1. ..... k. (IV.5)

with k = 2. In the general case k > 2. Note that in a general problem, the O,'s can assume different functional

forms. From figure 3, the output, y,, of the network due to the data r3 is given by

"= 10 c J.r) (116

:uO r

where g(.) is a sigmoid function defined as

1-P (12'.7)
1 -0,-

where A > 0 adjusts the steepness of its slope. The network of fig(ure 3 is capable of decision makoti , if one

mabps p Ž 0 to. say, R 1 .
Given the above network structure, the hypothesis testing problem takes on the folowig form: given a

set of 9,'s, i = 0.,1 ..... k, and a set of observations r along with the hypotheses under which they are generated.
choose the coffic ents c 1 sot he resulting decision scheme is cose to the optimal one a i

soe suitably defined sese It is therefore necessary, to establish a criterion of optimality and an aigointim
that updates the weights c,, a = 0,1 ..... k, in order to meet this criterion. The second task is the so cabed
trakning of the network. In the sequel we discuss two different performance criteria and derive the update

equations for the parameters of the network (synaptic weights) for each one of them.
The first criterion which appears more intuitive especially in view of the backpropans ation method 20. is

to minimiz the sum of the squares of errors over all the training data. Lu this cse, the index of performanceb

(IP) can be defined by
Nr

Jr(t) = ZL ei,(t)] (111.8)
=1=0
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where V is the number of available training data (typically around 50-100 per hypothesis) and C. is the error
defined by e( =Y(t) - Y' j = 1, ...,N (IV.9)

where y• is equal -,1 if ry is generated under H, or -1 if it is generated under Ho. Note that the time index
is introauced to denote updates of the weights c,. Since (IV.8) does not impose any penalty on the relative 4r,
magiutudes of the wasghts, a natural extension of (IV.8) is

1(t) = j~ on[e, ~ (Iv.10)

where p. 2 0 are suitably chosen weighing coefficients. Under (IV.8) or (IV.10), the network will approximate
a minimum probability of error classifier, i.e. will minimize the probability of error given by

PE = Pr(HIIHo)Po - Pr(HoIHO)P1  (fV.I)

where P.,. P, are the prior probabilities of the respective hypotheses. In this case, the training will try to
"fit" the model (WV.6) to the training data so that the sum of the square erron is minimized. Although this
approach seems natural, it is not suitable for hypothesis testing problems for two reasons. First. the network
that minimizes (IV.8) or (IW.10) for a given training set is not asymptotically optimal as the volume of the
avi•lable training data goes to infinity simply because even if PE can be made to be very close to zero for a
given training set, (for example by taking k % N) the network may not result to PE close to the probability
of error of the LRT over the entire data ensemble. (Note that since similar data may be generated by either
hypothesis. PE = 0 is not always possible.) On the other hand, if k is kept moderate, fitting is very difficult
especially when the data under both hypotheses are closely clustered as in the Gaussian case when the pdf's
under the two hypotheses have the same mean and comparable variances. An additional problem with the
training rule (IV.8) or (IV.10) is the lack of a general stopping criterion for the training. From the discussion
above. (IV.8) and (IV.10) are not satisfactory criteria for our problem, although, they result in acceptable
performance in linearly separable data cases as is shown in the simulations section.

The second criterion used for training is based on the Neyman-Pearson (N-P) approach which maximizes
the probability of detection at a given (fixed) false alarm probability level. The key difference between the
N-P and the the least squares error approach is that in the N-P training the hypotheses are separated and
enter separately in the performance index. For this method, the performance index is given by

i(t) = PM(t) + •[P-(t) - PFpo2  (p > 0) (I1.1%2)

where Pr, is the preset level of false alam probability and PM, PF- are defined by

• MO - EN= I(' + 4,11 - M01(Q
P,%[ .(t[l-= )a-] (mA13)2 N -- A.,=

Pr(') := 2 t1- ) ( (IV.14)

and are approximate expressions for the miss probability PM and the false alarm probability PF of the net-
work respectively. For a large sample sise and large X, the expression on the R.HS of (1V.13) and (IV.!4)
approximate the Pm(t) and PF(t) of the network. In view of (IV.12), the training in this case should compute
the weights c,, i = 0, ..., k, that minimize J for the given training set.
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In she ol~owmng, for *adh of the above optimality criteria, we derive the update equations for the (syzap-
tic) weights.

2. Gredint Update Laws
The derivative of Atz) is given by

2Aez
= ~ ~(1V-15)

The tim. derivative of J(t) fro (lV.6j is

V-=2 =j (t) ded2'vejM (IV.16)
Jul Ju{l ()[ Roo

from which it is clear that if

dccn

we have that

=-2aT'[ ej& 2eI 0
arno Jul

which implies that J is decreasing for as long as the network does not reach an equilibrium point. A simple
first order update expression for the weigh:s follows directly from (rV.17) and from the fact

Ee = C~o,(r,) 0.(r.) (IV.18)

ud has the following form

Jul (w

Where s0,M011...Ik.
For (WV.10), in a simnila manner, the recurion update laws are given by

"(t +)=( + p3 tc()-(ant) e'g* ( cio(?1 )) ~t (MV20)

which results in significant improve =-=t on Performance and rate of convergence as found from simulations.
For the IP given by (lV.12), the derivation of the update equations is as follows:

aI = -Pa- + - F dt (XV.21)

Us~ing the chain rule, we obtain

dPt B49c,, d PFdt E 4c" (11'.22)

0rn nzO Cid
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The partial derivatves in (IV.22) we given by the expressions

OC 2 IV Y d

0Pr I V_.10 - Y)")a,. (Il'.24)dc 2 N- ! .l+N Yj

where as before

Oc,, \ JIn

Hence the gradient update rule is given by

- = fj- a[ -" (B - PFO). (riV.26)

which results in the following iterative update expression for c,

C.(t - 1) = c.(t) - (4At) [P.L - X(P - Pp0) J (I1127)

which in view of (IV.23), (IV.24) is a so-called batch training method since all training data are required for 0
each update.

In the remainder of this section. we compare the performance of the above training methods for two

hypothesis testing problems.

3. Simulation Results: The Centralized Case
The different hypothesis testing paradigms were selected in order to compare the performance of SANs in

linearly and nonlinearly separable data ensembles under the MSE and N-P training rules. The performance
was benchmarked with respect to the size of the training data ensemble, the number of power terms (o, 's) in
the functionai representation of the data, and the training rule.

The two selected problems for centralized and distributed hypothesis testing were:
(i) a Linear Gaussian Problem (LGP)

r= {+N(O,1) :Hi (LGP)

(ii) a Quadratic Gaussian Problem (QGP)

N(O, 5) :H, (QGF'
"= N(O,1) :Ho

where N(M. d2) is the Gaussian distribution with mean m and variance a'. For each problem. the optirnal
LRT test follows directly from (IW.4).

In all cases, both the mean-squared-error (MSE) rule, eq. (IW.8), and the Neyman-Pearson (N-P) rule.

eq.(IV.12), were used to train the SANs. The simulations were conducted as follows. The number of coef-

ficients were fixed to either three (k=2) or six (k=5). Experiments with samples of one hundred (fifty per
hypothesis) and two hundred (one hundred per hypothesis) data points were performed. The initial %wue
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of the c, coefficients was sero in all simulations. For the MSE training, selective training was used to avoid
convergence problems that aise during training from data that belong to different hypotheses but are "met-
rically" close. According to the selective rule, at each training, corrections were made only over those data
points that were identified as belonging to the correct hypothesis at the beginning of the session.

A.n arbitrary stopping rule was also used to terminate the MSE training when the gradient was less than

N-P training was performed at different PFA's. The post-training Receiver Operating Characteristics
(ROCs) were obtained by keeping all the c, coefficients fixed at their training values and varying the threshold
(co).

The ROCs were experimentally obtained by running ten thousand data points (five thousand per hvpoth-
esis) through the SAN but excluding the data points used for training. For each problem. we seiected the
coefficients that corresponded to the value of the PFA which generates the experimental ROC with the larger
area when tested on the training data. For the LGP. the N-P training method outperforms the error tra ig
method. This is also the case for the QGP. The simulation results for both problems are summarized in Table
I for the error training and Table 2 for the Neyman-Pearson method respectively.

Some conclusions drawn from the simulations follow.
1) The N-P training method outperforms the error based training method. This is clear from the QGP

where the data under the two hypotheses are not well separated spatially as in LGP, in which the data are
clustered around the two well separated means.

2) If the model is overparameterized. the performance of the NP-trLined SAN is sensitive to the value of
PF0. For example in the (QGP), the performance is good for PF, = 0.7 and poor for PF, = 0.2. As a result
one should try several values of PF, and choose that one for which the ROC (obtained from testing on the
training data after training) gives the ROC with the largest area. Furthermore. one could also start with a
low value for k (say k = 2) and keep increasing its value, choosing finally the ROC with the largest area. 0 0

3) In general. N-P training results in a SAN that performs close to the optimum test. Since no a priori
knowledge for the pdfs is necessary, this is a powerful approach especially in the case in which the volume of
the available data is not sufficiently large for a reliable estimate of the pdfs under each hypothesis.

B. Distributed Decision Fusion with N-P Rule Trained SANs 0

1. Network Structure
The fusion system in Fig. 12. which consists of three identical sensors interconnected in parrallel was used

to test the performance of N-P trained SANs in data and decision fusion problems. In the centralized data
fusion test. each sensor in the configuration of Fig. 12 simply relays its observations to the fusion directly.
The fusion is replaced by a SAN similar to the one shown in Fig. 3. Thus, the centralized data fusion SAN is
identical to the one discussed in the previous section. except that three data are available at a time. instead
of a single measurement as in the case of single sensor SAN.

In the distributed decision fusion (DDF), each sensor in the configuration of Fig. 12 is replaced by a
SAN similar to the one Fig. 3. Due to the similarity of the sensors, it is assumed that a symmetric solution,
i.e. identical s•,'naptic weights and thresholds among all three sensors results in a solution that is close to the
optimal one, ,i not "the optimal". Under the assumption (or constraint) of identical operating points, the
structure of the optimal DDF, eq. (VI.2), simplifies to

N H,

%=I HO

with the convention.
1 if the i-th local decision favors hypothesis H1  (Ii'29

u , 0 if the i-th local decision favors hypothesis Ho
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Notice that the numerical values associated with each sensor decision are merely an expressionai conve-
nience and do not play any role in the outcome of the fusion process (see Section V as well).

Given the structure of the optimal DDF equation (IV.28) in the symmetric case, the only vanabies that
determine the performance of the fusion for a target false aiarm probability are the thresholds at the sensors
(common among all sensors) and the fusion threshold. Thus. in the SAN implementation of the symmetric
DDF oaiy two parameters are adaptively adjusted: the common threshold for all sensors and the fusion thresh-
old. This structure was used for training the SAN to perform the DDF for the fusion system of figure 12 using
the N-P training rule. However, N-P training of the network by varying the two thresholds simultaneousiy
resulted in very poor performance of the fusion. Thus, instead of training all the sensors simultaneously by
minimizing the N-P performance index at the fusion, the ROC of each sensor was obtained separately using
N-P training first. Then, the fusion rule was fixed a priori, and the network ROC was obtained by varying
only the common threshold at the sensors after they were trained.

2. Simulation Results
In order to compare the performance of the centralized hypothesis testing with the DDF using the SAN.

the same two binary hypothesis testing problems that were used for testing the performance of SANs in CBHT
were also used for DBHT. The simulations for all problems were performed as follows: In all cases, the size of
the training set is not larger than 200 data points. Post-training testing is performed on at least 2000 data
points other. of course, than the training data points. The initial value of all c,'s is zero. Due to the training
rules that impiement a true gradient decent, convergence is monotonic in all cases.The values of the weights
after training for each ase are given in Table 2.

The DDF was done by pretraining each sensor with the test set individually using N-P training. To
implement the ROC of each sensor, a SAN with two terms in the power expansion (K = 2) was used . For the
LGP case 1. Table 2. the training set consists of 50 data points per hypothesis. The network was trained using
1000 iterations and the N-P training rule. For the QGP, 100 data points per hypothesis were used for training,
case 3. Table 2. Since all the sensors are assummed to be identical and operating at the same operating false
alarm and detection probability point, the synaptic weights (coefficients c,) for the DDF for all three of them
are identical, and identical to the weights used for hypothesis testing by each one individually, Table 2.

In all DDF cases, the sensors were assumed to be identical, all operating at the same PFA and PD. The
"OR', "AND", and the "ML" (majority logic) rules were used for decison fusion. The ROC of the different
fusion rules for the DDF are compared among themselves and with the centralized fusion ROCs in Figs. 13,
14. The following conclusions can be drawn from these figures.

In the LPG, the majority rule seems to give -.a best ROC for DDF, which is close to the SAN perfor-
mance on the centralized hypothesis testing. For the QGP, however, the OR rule seems to yield the best
ROC. which again, is close to the centralized ROC. A general conclusion from the numerical results seems to
be that for linear separable data, the majority fusion rule yields the best ROC. However, for quadratically
separable data, the OR fusion rule yields the best ROC.

V. Distributed Decision Fusion with Perceptron-Type Neural Networks

Although the form of the optimal Bavesian/N-P DDF is known, for both binary and multi-level quantiza-
tions i9,12,141, the optimal thresholds are given, in general, in terms of coupled, nonlinear equations , i10%.
whose solution is not forthcoming even in simple cams. Suboptimal numerical solutions to the N-P DDF ý10
may still be computationally intensive, if the fusion rule is unknown. The optimal solution to the Bayesian
and Neyman-Pearson DDF problem, eq. (IIL4) bears striking topological and functional similarities with the
structure of a neural network (NN). This topological similarity suggests an alternative approach to solving
the computationally N-P hard 15) DDF problem. By Aightly modifying the values that designate the decision
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as she i-t sensor to +1 if the i-th local decision favors hypothesis H( .
(=0 if the i-th kW• decision waor$ hypothlis Ho (W.1).

g, notational convenience, the optimalBaesian and N-P DDF rule (HL4), takes on the fom

*U + 1,) <> T1 v, H1

Whmo - Po D - ('.3)

LPF.- 10 11-PF

and
t [jo 1-PD,]('4

"1 - PF.

By combining the constant thresholds together with the unknown operational threshold T, and defining

* := -T"

the DDF rule (V.2) can be written in a form reminiscent of an NN architecture:

H,
, Ho (V.6)

A noticeable advantage of (V.6) over (V.2) is that the anknown threshold T! haks been absorbed in the synaptic
weight wo, which can be detervmned through training by assuming that it corresponds to the interconnection
weight of an additional, constant input to the fusion ueu. Notice that the threshold in (V.6) is known,
constant, and equal to zero. Thus, (V.6) can be implemented by using an NN and replacing the bard threshold *
decision rule by a smoother sigi•oidal nonlinearity (20.21. Nils '90, TPS '901.

In figure 1 the optimal Bayesian (N-P) DDF structure is shown when the local LR is linear on the data.
If the (local) sensors and fusion in figure 1 are identified with neurons and the thresholds are repiaced by con-
tinuous sigmoid functions, there is a one-to-one topological correspondence between the D-S DDF architecture
and the simple, two layer NN of figure 2. The topological similarities suggest that one can take advantage of
the learning capabilities of an NN and train it to solve the Bayesian DDF even when the channel statistics
are not known. The solution to Bayesian DDF can be achieved by using any one of the avai•able training
rules. For example, if a quadratic error is def•ned at the fusion by squaring the difference between the actual
hypothesis and the output of the fusion, a gradient based a•gorithm, such as backpropagation 2T,. can be
used to update the synaptic weights, i.e. the coefficients of the LiTs in the Bayesian DDF.

Taining of the NY with a quadratic error criterion will result in a m-ii aemror computer. if trained
Properly. A quadratic error training attempts to fit the data in two different hypotheses by mnimnizing a
distance criterion. However, if the data in the trinimg set are nmermicaly close under the two hypotheses,
Ofertraming of the NN in order to achieve perfect discrimination of the data in the training set will result in
poor post-training performance. To avoid performance degradaltion from ovetraining, selective training has
been used with excellent results. The drawbacks associated with overtraining in the quadratic error criterion
can be avoided by using an N-P based optimafity criterion, such as the minimization of the miss probability
at the fusion for fixed false alarm probability. Such a training criterion results in an NN that impiements the
Optima N-P DDF. If the optmal Bayesian DDF is highly nonlinear, an NN with inputs polynomial functions
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of the data (polynomial network) can be used to solve the optimal Bayesian DDF. This approach corresponds
to approximating the LRT by a truncated Taylor*s series expansion or a Voltera series simila to the approachj 0
used in SANs, figure 3, for determining the coefficients for each power in the T.S.E.

I
A. Training Rules

1. Backpropagation based on mean-squared error
Let the training output of the network be u; at the n-th iteration, while the training hypothesis is u'".

The backpropagation method trains the NN by minlmizing the

error energy = (g- ,U"). (.7)
n

where the summation is over all training data during a training cycle. To implement a true gradient descent
using the nomencluture of the generalized delta rule 1201, define for each neuron k the function

Jk = ot(l - ot) E bk(8)

all j that , leads to

where o, is the output of neuron j and Wkj is the current weight between node k and node j. The output
node is a special case where

The update of the weights during training is done using the difference equation

dW, = ,•6,o, - ,du,"7', (V.10) *

where 17 and a are predefined constants that determine the rate of convergence. The second term in the weight
update equation is known as the momentum term.

The NN that was used for DDF consisted of three identical sensors and a fusion. Each sensor was
represented by an identical NN, each having one input neuron, one hidden layer with three neurons, and a
single-neuron output laver. The fusion NN consisted of three input-layer neurons, three hidden-layer neurons 0

and a single-neuron output laver. The NN was first trained on the LPG and QGP of the previous section.
Backpropagation was used to train the three layer neural network to perform DDF. The test for conver-

gence was based on the criterion

S (,dW-)2]/ (u)} < 10-2 (.
~,all weights $)ail weights

Training was terminated when the criterion (V.11) was satisfied.

2. Training based on Neyman-Pearson
N-P training is conceptually identical to the backpropagation algorithm, except that training is done

around a desired false alarm rate at the fusion. In order to achieve training around a desired false alarm rate
a at the fusion, two possible performance criteria can be used to measure the output error:

E = PM + -)(Pp - a)2  (V.12)
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A

or a)2 13)

where PAI, P, are the miss and false alarm probabilities at the fusion.
The modifications required to the standard backpropagation to implement the N-P fusion rule relate only

to the energy function derivative with respect to the output. To get this, first we express the probabilities in
tems of the output as

PA, = G - D1".14)
4•-in am!

"N 01 - OWl.

PF = A(o.15)
6=urnS a. I

which give two possible derivative forms

dE = -- "UT) (V.16)

dE (1- u"')
=-2 I, . - 2A(PF -

; U,,,= u, (1- u,)

for (V.12) and (V.13) respectively. If we set

N Sdl: u FR ( M
0du -

Mal 0
where "o" designates the output neuron, then the backpropagation rule proceeds as described above. The
update rule (V.10) with 6. defined by (V.18) implements a true gradient descent training by batch-processing
the training set, whereas the backpropagation with 6, defined by (V.9) implements a "pseudo'-gradient de-
scent. A pseudo-gradient back propagation with the N-P energy functions (V.12) or (V.13) did not manage
to produce a suitably trained NN. However, the true gradient N-P training rule (V.18) was successfully used
in training the NN to solve the DDF problems.

3. Training based on Kalman Filter
The problem of training a NN can be viewed as a Ka-1an Filtering problem [231. If the ideal (unknown,

weights and thresholds of the NN are identified with the state z(n) of a Ka--an Filter, then these weights
should be time-invariant, thus satisfying the plant equation.

x(n - 1) = z(n) ('.19)

The unknown state x(n) in the NN is observed via the nonlinear output equation

d(n) = h(z(n)) + w(n) (1-.20)

where the error made from not knowing the weights and thresholds precisely is modeled as zero muan. random
error t(n) with covariance matrix E[v(n)v(n)T] = R(n), a positive definite matrix. The nonlinear function h(.)
takes into account all the threshold nonlinearities at each neuron at every layer. From the nonlinear Kalman
Filter theory, the state z(n) can be estimated using the Extended Kalman Filter (EKF) with equations

x(n + 1) = z(,) + K(n)id(n) - h(z(n))] (1'.21)
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K(n) =P(n)R(n)[Rt(n) +t HT(n)P(,t)H(n)1 1' (V-22)

P(n + 1) = P(n) - K(n)H7 (n)P(n) (V.23) 0

where H(n),, is the derivative of the output i with respect to weight j, computed as in the backpropagation.
Also d(n) is the desired vector output neurons. For more datails on the use of the EKF for training the NN
to perform the DDF see [221

B. Simulation Results

The input data for each NN sensor wer generated from the LGP and QGP distributions that were used
to benchmark the SANs. The results are shown in figures 15 through 18. For the LGP one hundred training
points were sufficient to obtain a ROC close to the optimal DDF. However, for the QGP, one thousand sam-
ple points were required to obtain acceptable ROC. If the solutions of the error based backpropagation are
compared with the N-P based backpropagation, it is seen that the later results in superior performance. Yet 0
if the results from the perceptron-type NN are compared with the N-P trained SAN, figures 13 and 14, the
later results in superior performance with considerably fewer data samples, in particular for the QGP. (200
points for SAN vs 1000 points for PTNN). However, it should be stressed that no separate pretraining of each
sensor NN was required with BPTNN, as was required for SANs in order to perform DDF.

Overall, SANs have the advantage that their performance can be understood and interpreted analytically
since they are by construction parametric approximation to the LB. optimal fusion rules. For the PTNNs.
such an interpretation is not forthcoming, limiting the extrapolation of conclusions based on limited training
data sets to general classes of problems.

VI. SUMMARY
Natural structural similarities between the Bayesian DDF solution and adaptive networks are exploit- •

ed. It is shown that structured adaptive networks (SANs) and perceptron-type neuron networks (PTNNs)
can learn to solve centralized and distributed hypothesis testing problems efficiently, even in the aLsence of
explicit statistical information about the data, provided that the proper training rule and procedure are fol-
lowed. Two training rules are invistigated. a mean squared error (MSE) based rule, and a rule based on the
Neyman-Pearson (N-P) test. Under both training rules, the post-training performance of the network is very
comparable to the optimal likelihood ratio test (LIT). However the N-P rule trained networks outperforms the
MSE rule trained network, even when selective training is used with the later. The behavior of the networks
under the two training rules is studied extensively in hypothesis testing problems with linearly and nonlinearly
separable dat Similarities and differences in the behavior and performance of the networks are discussed.
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